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Abstract

This report presents the results obtained and the research avenues developed
during my end-of-study internship at the LOCEAN-IPSL laboratory. The main
problem it seeks to address is whether the tuning method known as History Match-
ing or Iterative Refocussing is suitable for calibrating coupled ocean-atmosphere
models. We show that in the framework of a toy model, Lorenz-96, which can, with
some limitation, be assimilated to a simplified version of an Atmosphere Ocean Gen-
eral Circulation Model, the History Matching tuning method allows to significantly
reduce the model’s parameter search space. We also show that these results are
valid for an AMIP- or OMIP-style experiment where, in the first case, a simplified
atmosphere model is forced by ocean observations and in the second a simplified
ocean model is forced by atmospheric observations. Finally, we propose two more
general results on the History Matching method which we find interesting. First, we
show that it is possible to significantly reduce the number of metrics used in History
Matching by using a linear (Empirical Orthogonal Functions) or non-linear (Au-
toencoders) dimensionality reduction method. Furthermore, although further work
is needed to validate this point, we propose two new emulators that seem to show
some good properties to replace Gaussian Process Regressors in History Matching,
Random Forest and Bayesian Neural Networks. Finally, we stress the importance
of the availability of tools allowing to estimate precisely and simply the uncertainty
of the predictions of the different models.
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1 Introduction
Climate models or Earth System Models (ESMs) have become central to the study
of climate evolution, both for the assessment of past climates and for projections
of future climate. These models were among the first applications of numerical
computation in the 1950s (see Platzman [1]) when the use of the "super-computers"
of the time enabled the field of weather and climate prediction to experience a real
boom. The structure of these models has become more complex over the last few
decades, first including ocean circulation (see Manabe and Bryan [2]) in 1969, then
the contribution of the radiation balance modified by human forcing linked to CO2

emissions (see Manabe and Wetherald [3]) in 1975, leading finally to the creation of
the Intergovernmental Panel for Climate Change (IPCC) in 1988, whose mission is
"[...] to assess, in a systematic, clear and objective manner, the scientific, technical
and socio-economic information needed to improve our understanding of the risks
associated with human-induced global warming [...]".

The various components of the ESMs are generally modelled by systems of partial
differential equations (PDEs) describing various processes such as fluid mechanics
(described by the Navier-Stockes equations) or thermodynamics for modelling the
ocean and atmosphere or biological and chemical processes describing marine and
terrestrial ecosystems. These processes encompass spatial and temporal scales of
different order, ranging from the collision between cloud particles of the order of a
micron in size to the deep circulation of ocean, of the order of 1000 to 10000 km.
The limited computing power of today’s supercomputers does not allow the creation
of models representing the entire Earth system at a sufficiently small scale to model
small-scale processes such as cloud formation or the formation and circulation of
plankton. Furthermore, human contributions to climate change are now widely
accepted and their uncertain evolution complicates the modellers’ projections.

The two issues raised above (scale and human forcing) are generally solved by
using parameterization methods, where small-scale processes and human forcing are
modelled by parameters that are considered unknown and that it is then necessary
to estimate with regard to the different observations of the climate system at our dis-
posal. Some physical processes also include unknown parameters in their structure,
which similarly need to be estimated using field observations.

This work explores the application of a parameter estimation methodology, known
as History Matching (HM), to coupled ocean-atmosphere models. This step in the
evaluation of climate models is also referred to as ’tuning’ or ’calibration’ in the
literature and refers to the search for the most likely parameters based on differ-
ent observations of the climate system. The methodology generally used for all of
these methods involves a step where a number of simulations are run with different
parameters and then an evaluation step where the outputs of the simulation are
compared with observations of the climate system. The parameters selected are
then those that allow the numerical model to generate outputs that are closest to
the observed state of the climate. We evaluate the application of the HM for tuning
coupled ocean-atmosphere models using a toy model, the Lorenz-96, as a simplified
version of the former.

One of the main problems in tuning these models is the high computational cost
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of simulating climate models. The numerical model is therefore often replaced by a
statistical model (called an emulator) whose computational cost is much lower, thus
allowing a larger number of parameters sets to be tested. This is especially important
when the number of unknown parameters is large and it is necessary to test a large
combination of parameters sets to cover the parameters space satisfactorily.

We are also interested in exploring the application of different statistical models
from the machine learning community, such as Random Forest (RFs) or Gaussian
Process (GPs), as emulators of the numerical model for the tuning of AOGCMs with
History Matching.

2 Scope
The first phase of this work consisted in using the History Matching tool and investi-
gating its relevance for AOGCMs by applying to the Lorenz-96 toy model. We then
start this report by presenting the History Matching technique in Subsect. 3.1 then
introducing the Lorenz-96 model in Subsect. 3.2. We will evaluate this methodology
in a classical framework and then in the case of Atmosphere Model Intercompar-
ison project (AMIP-style experiment) and Ocean Model Intercomparison Project
(OMIP-style experiment) which seeks in the first case to tune an atmospheric model
forced by oceanic observations and in the second case to tune an oceanic model
forced by atmospheric observations. A more detailed description is given in the
Subsect. 3.4.

While linear regression models and Gaussian Process regressors have been widely
studied and compared (see Salter and Williamson [4] and Williamson et al. [5]) as
statistical emulators for climate model calibration, it seems that few recent models
from the machine learning community have been studied for this task. Some of them
however show very good performances in a large number of tasks and seems adapted
as statistical emulators for history recalibration - in that they allow to estimate the
mean of predictions as well as their uncertainties. A major limitation of Gaussian
Processes is their computational complexity as the inversion of the covariance matrix
required during the learning phase (see 3.3) is cubic which makes them hardly usable
for large datasets that can appears when a large number of parameters are tuned.
On the other hand, linear regression models perform less well than GPRs for HM
tuning (see Williamson et al. [5]) and it seems to us that some models could, with a
lower learning cost than GPRs, show more interesting results than linear regressions.
In particular, we believe that Bayesian neural networks and random forests have
good properties and we will evaluate their performance in the context of Lorenz-96
calibration by History Matching. The Subsect. 3.3 will describe the different models
evaluated in this work and how they will be tested.

Finally, in order to compare the outputs of the simulations and the field observa-
tions, it is necessary to have a certain number of metrics summarising the evolution
of the system studied. Lorenz-96 is for example tuned using a set of 180 metrics (see
Schneider et al. [6]), which can generate a high computational cost. Having observed
that some of these metrics were highly correlated, we will finally consider the use of
dimension reduction methods, namely Autoencoders (AE) and Empirical Orthogo-
nal Functions (EOF), in order to reduce the number of metrics and thus reduce the

2



computational cost of training and predicting emulators. These two methods are
detailed in Subsect. 3.5

3 Methodology

3.1 History Matching

The term History Matching first appeared (Craig et al. [7]) in the oil engineering
community. In order to predict the future production of oil reservoirs, engineers have
at their disposal complex numerical models (systems of partial differential equations)
to measure the temporal evolution of water, gas and oil flows in reservoirs. However,
these models must be adapted to the geological conditions and to the conditions of
use of the reservoir studied and therefore have a set of adjustable parameters. In
order to predict the evolution of production as reliably as possible, it is therefore
necessary to find the set of parameters that best describe the reservoir conditions. To
do this, the engineers use the model outputs (a set of oil, water and gas production
measurements) which they will try to match with observed historical production
(hence the term History Matching). To summarize, their problem is to find the set
of parameters that will allow the model to best matches with observed historical
production.

This leads to several problems. First of all, reservoir models are particularly
expensive in terms of computation time and it is therefore only possible to test a
reduced set of parameters. Secondly, the number of parameters is generally high,
which combined with the low number of simulations, leads to a strong scattering
of the parameter sets used for the simulation and it is therefore unlikely to have a
correct representation of all possible sets of parameters.

History Matching is therefore a statistical method, which allows to answer this
problem by iteratively rejecting the parameter sets considered to be the most im-
plausible in view of the simulations they generate, the field observations and the
various uncertainties expressed on the predictions of the emulator, the observations
or on the structure of the numerical model itself.

History Matching is now a widely studied, published and established method and
is used in many scientific and engineering fields such as galaxy formation modeling
(Vernon et al. [8]), spread of infectious diseases and viruses (Andrianakis et al. [9])
and has been attracting the attention of the climate science community during the
last decade.

We consider, retaining the notation of Williamson et al. [10], y the (imperfect)
historical observation of the climate system such as y = z+εobs with z being the real
historical state of the climate system and εobs the uncertainty about observations.
Also we note by f(x) the climate model for any set of parameters x in a d-dimensional
space χ. As it is impossible to evaluate f(x) for all x ∈ χ because of the continuity
(at least per piece) of χ, we only have a set F[n] = f(x1), ..., f(xn) of n simulations
(called perturbed physics ensemble - PPE) of the studied model corresponding to
the simulation of the parameters X[n] (called Ensemble Design).

The choice of the Ensemble Design is called Space filling design and is detailed in
section 3.1.1. The simulation of the PPE and the choice of metrics to represent it is
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Figure 1: Maximin (left) and minimax (right) designs for 7 points in [0, 1]2. From
Pronzato and Müller [12].

explained in section 3.1.2. We can then use the created ensembles (the metrics based
on PPE and the Ensemble Design) to train a statistical model, also called emulator,
so that it takes the place of the climate model to simulate the behavior of the latter
with a greatly reduced computation time. This step is describe in section 3.1.3. We
describe in section 3.1.4 how this emulator is used to generate the implausibility
distribution over the entire parameter space. We can finally use the implausibility
distribution to exclude the least plausible areas of the parameter space in order to
reduce it. This being done we can reiterate all the steps previously described on the
new space created as explained in the section 3.1.5.

3.1.1 Space filling design

As mentioned earlier, since our climate models are often expensive to run, it is im-
possible to have as many model runs as necessary to have an exhaustive sampling
of the parameter space. It is therefore crucial to sample our parameter space ju-
diciously. This step is often referred to as "Space Filling Design" in the literature
and has been extensively studied for many different cases (Joseph [11], Pronzato and
Müller [12]). As explained in (Pronzato and Müller [12]), the standard practice used
for this is to select the parameters in such a way that they cover the χ parameter
space in the most uniform way possible. This space being in general large, there are
several methods for this.

In this section we will quickly detail the main methods used:

• Geometric Sampling

If the considered space is one-dimensional, the space filling design seems ob-
vious. Considering the space χ1 = [0, 1], a correct design could be ζ = { i−1

n−1
:

∀i ∈ 1..n} or ζ = { i−1
2n−1

: ∀i ∈ 1..n} depending on whether we consider the
edges or not. The idea behind this simple example is the minimization of the
distance. Let us now consider the general case with χd = [0, 1]d. We want
to sample as well as possible the set of points ζ = (x1, x2, ..., xn) on χd. For
this we have a norm (say the Euclidean norm) < ., . > as a distance measure
between two points dij =< xi, xj >. A simple idea could be to try to maximize
the minimal distance between two points of the sample, we would have
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Figure 2: Latin Hypercube Sampling in 2 dimensions with 4 points.
Source : Wikipedia

φMm(ζ) = min
i 6=j

dij

Maximizing φMm(.) is called a maximin-distance design (see Johnson et al.
[13]).

We can consider an other point of vue where we may attempt to minimize the
maximum distance from all the points in χd to their closest point in ζ. This
can be done by minimizing minimax-distance criterion

φmM(ζ) = max
xi∈χd

min
xj∈ζ

dij

We then speak of minimax-distance design of which a more complete descrip-
tion can also be found in Johnson et al. [13].

A comparison of the two methods is available Fig. [1].

• Latin Hypercube Sampling

The Latin Hypercube Sampling (LHS) was developped by Mckay et al. [14]
in 1979. The method performs sampling by ensuring that each sample is
positioned in a d-dimensional space Ω as the only sample in each (d − 1)-
dimensional hyperplane aligned to the coordinates that define its position.
Each sample is therefore positioned according to the position of previously
positioned samples, to ensure that they do not have common coordinates in
space Ω.

The standard LHS can be taken as a starting design and then optimized accord-
ing to some optimization criterion like maximin or minimax criterion describe
earlier.

• Monte-Carlo and Quasi-Monte-Carlo Sampling

Monte-Carlo Sampling (MCS) and Quasi-Monte-Carlo Sampling (QMCS) are
pseudo random sampling methods. Unlike MCS, QMCS are designed to place
sample points as uniformly as possible.

The quasi-Monte-Carlo method is based on the same problem than the Monte-
Carlo method. It approximates the integral of a squared-intergable function
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f over the n−dimensional hypercube Hn by the average of the values of the
function evaluated at a set of points x1, ..., xN :∫

Hn

f(x)dx ≈ 1

N

N∑
i=1

f(xi) (1)

The difference between Monte-Carlo method and quasi-Monte-Carlo method
is that for the first the xi are generated with pseudo-randomly sequences and
for the second they are generated with some low discrepancy sequence like
Halton sequence or Sobol Sequence.

Figure 3: Monte Carlo Sampling (left) and Quasi Monte Carlo Sampling (right) for
red=1,..,10, blue=11,..,100, green=101,..,256.
Source : Wikipedia

It is now widely recognized that Sobol Sampling (QMCS with with a Sobol
sequence) is superior to other QMCS and MCS technics in many aspect (see
Chen and Hong [15] and Kucherenko et al. [16]). For this reason, we will
concentrate on this method.

The commonly used sampling method for HM is the maximin LHS (see Williamson
et al. [10], Williamson et al. [5] or Vernon et al. [8]). As we have not found an ex-
plicit reason for this choice, we are interested in exploring how Sobol sampling (as
represetent of QMCS methodology) will handle this step of History Matching.

The number of samples selected also plays a central role at this level. A high
number of samples will allow a good modeling by the emulator but will lead to a
high computation cost during the numerical simulation. A lower number will lead
to a decrease in the quality of the modeling by the emulator but will reduce the
computation time of the numerical simulation. It is therefore important to find a
good compromise. The order of magnitude generally used for the number of samples
is 10× p where p is the number of parameters (see Williamson et al. [10]).

3.1.2 Numerical simulation and metrics choice

A climate model, is generally a set of partial differential equations based on the
equations of fluid mechanics (Navier-Stockes equations) and thermodynamics, but
may also be based on equations describing biological or chemical phenomena. Its
purpose may be to describe one of the actors in the climate (e.g. the ocean, in which
case it is referred to as an Oceanic General Circulation Model, or the atmosphere, in
which case it is referred to as an Atmospheric General Circulation Model), a region
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of the climate (e.g. a region of the Earth) or the Earth as a whole (e.g. Earth
System Models)

The numerical solution scheme of these equations may be of some importance at
this stage. Indeed, an Euler scheme will have a larger integration error than a Runge-
Kutta scheme (RK4 for example) and this error propagating as a structural error of
the model (see 3.1.4) will lead to a different result when calculating implausibility.

Unlike typical calibration methods, which present the parameters search problem
as an optimisation problem where the objective is to find the set of parameters that
allows the model to be closest to a set of metrics, HM seeks to rule-out areas of the
parameter space that are inconsistent in reproducing the chosen metrics.

In the climate science community, the term metrics refers to the measurements
that the modeller chooses to report on the state of the climate system. They can
be of different kinds (scalar, vector or tensor fields of different quantities, volume-
integrated means and anomaly fields, heat and salt transport metrics, etc...). It is
then important to clarify what is meant when two metrics are said to be consistent
or inconsistent, especially when talking about vector or tensor fields.

Following Williamson et al. [5], there is three crucial ingredients when selecting
metrics for model tuning :

• It is judged physically reasonable/desirable and important to use the proposed
metric to constrain the model by the developers.

• We have a quantification of the uncertainty in the metrics. Without this, we
do not know how close we are nor when we have succeeded.

• The metric actually provides sufficient constraint on the parameter space:
certain metrics may be physically important, but do not vary sufficiently as
the model parameters are varied to make them useful in tuning (McNeall et al.
[17]).

3.1.3 Statistical emulators

One of the problems we quickly find ourselves confronted with the HM – and with
calibration methods more generally – is that this method requires a very large num-
ber of simulations in order to be able to eliminate all the areas of the parameter
space that do not correspond with the observations. However, the simulations in
question are generally very costly in terms of computing time and it is therefore im-
practical in practice to generate the entire data set with the numerical model. This
is why a statistical emulator is generally used in calibration methods, the aim of
which is to replace the numerical simulator by generating the metrics from a certain
set of parameters in a much shorter time.

For this purpose, we need to run a smaller ensemble of the model by using one of
the sampling methods discussed above, and use that ensemble to train the statistical
emulator which will take the place of numerical model when exploring the parameter
space.

In the context of the HM, an emulator must be able to provide us with both a
good estimate of the metrics and a measure of the uncertainty in that prediction.
From a statistical point of view, our emulator must therefore be able to provide us
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with the estimated expectation on the metrics for a given set of parameter x, noted
E[f(x)] and an estimate of the variance on them, noted V ar[f(x)].

A common choice for an emulator, following Williamson et al. [5], could be

fi(x) =
∑
j

βijgj(x) + εi(x) (2)

εi(x) ∼ GP(0, Ci(., .;φii)) (3)

where the vector g(x) contains specified basis functions in x, the matrix β is a
set of coefficients to be fitted. The GP stands for a Gaussian process, with Ci as
pre-specified covariance functions, and with the φi being their parameters.

The search for new statistical models as emulators for the MH being one of the
focal points of this report, we will develop in a more advanced way the different
models considered in section 3.3.

3.1.4 Implausibilty and parameters space reduction

The simplest idea to find the set of parameters that allow the model to get as close
as possible to the real state of the climate system seems to be to define a distance
measure between the model output f(x) and the real state of the system z. We
could thus use our emulator to find the set of parameters that minimize the distance
between the model output and the system state. Following Williamson et al. [5], we
could then consider the following optimization problem

x∗ = argmin
x
‖z − f(x)‖f

Where ‖.‖f is a norm taking into account the different uncertainties discussed
previously. For example, we may consider the Mahalanobis distance

‖z − f(x)‖f = (z − f(x))T Var[z − f(x)]−1(z − f(x))

As stated in Williamson et al. [5], because we are using our emulator, we do
not have access to entire distribution of our model f(x) but only to the expectation
E[f(x)] and to the variance Var[f(x)].

We can reformulate the distance, using the prediction of our emulator

‖z − E[f(x∗)]‖f = (z − E[f(x∗)])T Var[z − E[f(x∗)]]−1(z − E[f(x∗)])

= (z −m∗(x∗))T Var[(z − y) + (y − f(x∗)) + f(x∗)− E[f(x∗)]−1(z −m∗(x∗))
= (z −m∗(x∗))T (Ve + Vη + Var[f(x∗)])−1(z −m∗(x∗))

We thus ensure that if our distance measure is large for a given set of parameters
x∗, the outputs of our model are too far from the observations and those taking
into account the different uncertainties that we have on the climate model, on the
observations and on the predictions of the emulator. Thus the small values of ‖z −
E[f(x∗)]‖f appear in two cases only: the distance between the prediction of the
model and the real state of the system is small or one of the uncertainties is too high.
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We will call this distance measure implausibility and notate it I (x) = ‖z−E[f(x∗)]‖f .
In order to rule out some region of the parameter space it is now necessary to decide
the value from which the implausibility is too large.

3.1.5 Refocussing

We refer to the term refocussing by iteratively generating an EPP and a Design
Ensemble on which to train a statistical emulator to then ruled-out part of the
parameter space. The iterative aspect of the HM provides a certain flexibility that
other approaches may not. After having significantly reduced the parameter space
with a set of metrics describing well the general tendencies of the system we could
indeed try to reduce it by using metrics describing some more local aspects of it over
several iterations in order to reduce the parameter space even more.

However, There are still some methodological aspects on which there is no con-
sensus. Firstly, the stopping criteria are not clearly defined and the approach there-
fore generally varies from one problem to another, it is usually pragmatic and limited
by computational resources. The process will therefore most often be stopped when
it is felt that performing one more wave would not reduce the parameter space suf-
ficiently compared to the computational time that it would require. Also, as stated
in Williamson et al. [5], "when the emulator variance is largely smaller than the
denominator in the implausibility calculation, then it is unlikely that further waves
will change the implausibility very much" and it may be unreasonable to perform a
new wave. Secondly, a difficulty arises with multi-wave design after the first wave.
In fact, it is no longer possible to use use LHS to sample the NROY space as it is
in general not a hyperrectangle and may contain several disconnected regions.

Our approach to this work is to sample the entire parameter space with enough
samples to leave approximately the desired number after rejecting those with an
implausibility score greater than 3 for each emulator. Since the sampling is not
perfectly uniform, we slightly overestimate the number of samples needed and then
perform a random draw on the samples remaining after exclusion by History Match-
ing. This is a simple and a non perfect strategy, but it was used for example in
[8].

3.2 Numerical model - Lorenz 96

As explained above, one of the objectives of this work is to evaluate the extent
to which History Matching can be used for the parameter estimation in coupled
models (for example, for a Ocean Atmosphere General Circulation Model). For all
our experiments, we use a toy model, the two-layer Lorenz-96 which has been widely
studied by the data assimilation community (see Lguensat et al. [18], Schneider et al.
[6], Ott et al. [19], Lorenz [20], Anderson [21], Gagne et al. [22]). This choice is based
on different considerations which will be detailed in subsection 3.2.2.

3.2.1 Model description and metrics

The two-layer Lorenz-96 is a dynamic system composed of two simple ODEs pro-
posed by Edward Lorenz in 1996 in Lorenz [23] to study the pedictibility of weather
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and climate systems.
Using the notation of Schneider et al. [6], we can describe the model by the

following ODEs

dXk

dt
= −Xk−1 (Xk−2 −Xk+1)︸ ︷︷ ︸

Advection

−Xk︸︷︷︸
Diffusion

+F︸︷︷︸
Forcing

−hcȲk︸ ︷︷ ︸
Coupling

(4)

1

c

dYj,k
dt

= −bYj+1,k (Yj+2,k − Yj−1,k)︸ ︷︷ ︸
Advection

−Yj,k︸ ︷︷ ︸
Diffusion

+
h

J
Xk︸ ︷︷ ︸

Coupling

(5)

where Ȳk = 1
J

∑J
j=1 Yj,k. Following Lorenz [23] we let K = 36 et J = 10 so that

there are 10 small sectors, each degree of longitude in length, in one large sector.
So we have a set of 4 parameters that we will try to tune: h, F, b and c. Again,
following Lorenz [23] we set the truth value of c and b to 10 implying that the
convective scales tend to fluctuate 10 times as rapidly as the larger scales, while
their typical amplitude is 1/10 as large. Also we let h = 1 and chose F = 10 as it
is sufficent to make X and Y vary chaotically (Lorenz [23]). Note that contrary to
what is proposed in Lorenz [23] we keep here the external forcing parameter F in
addition to the forcing exerted by Y on X.

Following Rasp [24], this system is integrated using a Runge–Kutta fourth order
scheme with a time step of 0.001. We used the L96 Python code accompanying
the paper of Rasp [24] https://github.com/raspstephan/Lorenz-Online in this
work.

As stated in Schneider et al. [6], the quadratic nonlinearities in this dynamical
system conserve the quadratic invariants (“energies”)

∑
kX

2
k and

∑
j Y

2
j,k. Also,

the interaction between the slow and fast variables conserves the “total energy”∑
k(X

2
k +

∑
j Y

2
j,k) . Energies are prevented from decaying to zero by the external

forcing F . After a certain number of iteration, the system approaches a statistically
steady state (called attractor) in which driving by the external forcing F balances
the linear damping.

Always following Schneider et al. [6], we will use the metrics

f(X, Y ) =


X
Ȳ
X2

XȲ
Ȳ 2

 (6)

The priors on those parameters for this work will be the uniform distributions
described by Tab. [1].
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Figure 4: Evolution of X0(t) (left) and Y0,0(t) (right) for the 10 first iterations
(with dt=0.001) for ground truth parameters with different initializer, Xk(t = 0) =
10,∀k 6= 18 and with X18(t = 0) = 1.001 (blue) and X0

18 = 1.002 (orange)

Table 1: Prior intervals for the parameters

heightParams Prior True
F [-20,20] 10
h [-2,2] 1
c [0,20] 10
b [-20,20] 10

Also we will discuss in the result to what extent those metrics are appropriate
for this problem.

3.2.2 Interest

This model in addition to the fact that it has been widely studied on several aspects
- as a toy model of chaotic systems for the study of dynamical system forecasting,
parameterization or data assimilation - presents two major interests for our studies.

First of all, its chaotic aspects make it a particularly difficult model for prediction.
We can indeed see (figure 4) that the system is very sensitive to the initial

conditions, a slight variation on the initial state of the system leads to uncorrelated
variations after a few iterations.

Secondly, as its two components (X and Y ) evolve at different spatial and tempo-
ral scales, it can be assimilated to a simplified version of a coupled ocean-atmosphere
model where the slow component X would represent the state of the ocean and the
fast component Y the state of the atmosphere. The slow variables X may be viewed
as resolved-scale variables and the fast variables Y as unresolved variables in an
ESM. Each of the K slow variables Xk may represent a property such as surface
air temperature in a cyclic chain of grid cells spanning a latitude circle. Each slow
variable Xk affects the J fast variables Yj,k in the grid cell, which might represent
cloud-scale variables such as liquid water path in each of J cumulus clouds. In turn,
the mean value of the fast variables over the cell, Yk, feeds back onto the slow vari-
ables Xk. The strength of the coupling between fast and slow variables is controlled
by the parameter h, which represents an interaction coefficient, for example, an en-
trainment rate that couples cloud-scale variables to their large-scale environment.

11



Figure 5: Evolution of X0(t) (left) and Y0,0(t) (right) for the 15 first iterations (with
dt=0.001) for ground truth parameters (red) and 40 samples of tested parameters
(grey)

Time is nondimensionalized by the linear-damping time scale of the slow variables,
which we nominally take to be 1 day, a typical thermal relaxation time of surface
temperatures (Swanson & Pierrehumbert, 1997). The parameter c controls how
rapidly the fast variables are damped relative to the slow; it may be interpreted as a
microphysical parameter controlling relaxation of cloud variables, such as a precip-
itation efficiency. The parameter F controls the strength of the external large-scale
forcing and b the amplitude of the nonlinear interactions among the fast variables.

3.2.3 Limits

Julie/Balaji please help

• Caractère non-stationnaire du climat (contrairement au L96)

• Limite pour les modèles couplés

3.3 Statistical emulators

3.3.1 Definition

In order to simplify the notations, we will refer to the PPEs previously noted
F[n] = {f(x1), ..., f(xn)} by Y and to the Ensemble Design previously noted X[n] =
{x1, ..., xn} by considering that they form a training set of n samples noted (X, Y )
of which X represents the inputs and Y the outputs.

In order to use HM, the emulator used must provide the expectation E[f(x)] and
the variance var[f(x)] for any parameter x ∈ χ. In this respect, the HM method
is more permissive than the Bayesian calibration because it only requires access to
the probability distribution of f(x) as a whole.

3.3.2 Commonly used emulators

As mentioned earlier (see 3.1.3), the reference statistical models for HM are Gaussian
Process Regressors (GPRs). Those are widely used by the data assimilation and
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Uncertainty Quantification (UQ) communities to emulate computationally expensive
numerical models, particularly when few training samples are available.

Despite this, it seems to us that linear regression models are of interest for several
reasons. Firstly, GPRs are generally trained on the residuals of a linear regression
and it is therefore necessary to understand the latter. Secondly, linear regression
models are simpler to train which, in the case of a large number of samples and/or
metrics can be important. On the other hand, linear regression is a simple model
and generally known by the majority of the scientific communities, it is thus a
particularly accessible method both in its implementation and in its understanding.
Finally, as proposed in Salter and Williamson [4], it can be interesting in an iterative
approach to carry out a certain number of waves using a linear regression model as
emulator in order to identify the main trends of the studied system and then to
refine the parameterization on several waves with a GPR as emulator. This may
saves time without reducing the performance of the HM.

• Linear Regression

The linear regression, following Andrianakis et al. [9] notation, might be de-
scribed by:

f(x) =

q∑
i=1

hi(x)βi + ε(x), (7)

where hi(x) are functions of the inputs x, βi are their respective coefficients and
ε(x) is residual noise. The term "linear" comes from the linear relationship between
hi(x) and βi. Thus the function hi(x) can take any form, whether linear, quadratic,
or any other polynomial of higher degree, sinusoidal or any non-linear function.
Determining the best form of hi(x) is a tough question and it can be done using
different methodologies.

By noting h(x) = (h1(x), h2(x), ..., hq(x)) and β = (β1, β2, ..., βq)
T we can rewrite

the equation 7 as follows

f(x) = h(x)β + ε (8)

Thus, by notingH the matrix of dimension n×q having for columns h(x1), h(x2), ..., h(xn)
the maximum likelihood estimate of β is given by

β̂ = (HTH)−1HTY (9)

Thus the prediction of the model for a given set of parameters x∗ is

E
lr

[f(x∗)] = h(x∗)β̂ (10)

As previously described, it is also necessary to have an estimate of the uncertainty
of the model on this prediction. Still following Andrianakis et al. [9], the maximum
likelihood estimate of this uncertainty is given by
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Var
lr

[f(x)] = (Y TY − Y TH(HTH)−1HTY )/N (11)

• Gaussian Process Regressors

We can now describe the most commonly used models for History Matching
(Williamson et al. [10], Williamson et al. [5], Vernon et al. [8]), namely Gaussian
Process Regressors. As explained in the introduction to this section, GPRs are
generally trained on the residuals of a linear regression that is trained under the
conditions described above. Thus, we can describe them as

fi(x) =
∑
j

βijgj(x) + εi(x) (12)

εi(x) ∼ GP(0, Ci(., .;φii)) (13)

where the vector g(x) contains specified basis functions in x, the matrix β is
a set of coefficients to be fitted. The GP stands for a Gaussian process, with Ci
as pre-specified covariance functions, and with the φi being their parameters. One
can think of the term

∑
j βijgj(x) as an average describing the large-scale trends

of the dynamical system and the term εi(x) as a residual term, capturing the local
variations around the mean function.

A common choice, for the covariance function is the separable exponential power
covariance function

C(xi, xj;φ) = σ2(ν1xi=xj + (1− ν)
d∏

k=1

exp{θk|xk − x′k|κk}) (14)

φ = {σ, ν, θ, κ} (15)
(16)

The emulator can be trained by first specying a prior distribution over the pa-
rameters of the model, knowing (β, φ) and update them with our train data (X, Y ).
Following Williamson et al. [5], the posterior distribution fi(x)|Y, {β, φ} is

fi(x)|Y, {β, φ} ∼ GP(m∗(x), C∗(., .;φi))

with

m∗(x) =
∑
j

βijgj(x) +K(x)V −1(Y − βijgj(X))

C∗(x, x′, φ) = C(x, x′, φ)−K(x)V −1K(x′)T

where V is the n × n matrix with ijth element C(Xi, Xj;φ) and K(x) is the
vector with jth element C(x,Xj, φ).

Thus, we have
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E
gp

[f(x)] = m∗(x)

Var
gp

[f(x)] = C∗(x, x, φ)

In this work, we use the library https://github.com/BayesExeter/ExeterUQ_
MOGP for training linear regressions and GPRs.

3.3.3 Emulators from the machine learning community

We are interested here in the search for new statistical models to replace linear
regressions or GPRs. We propose the study of two models: Random Forest (RF)
which have been widely studied in the machine learning community during the last
decades and Bayesian Neural Networks which have recently attracted some attention
due to the need to provide neural networks with a good estimate of the uncertainty
of their predictions (see Jospin et al. [25]).

• Random Forest

We will here give a quick description of Random Forests, for more details we refer
the reader to the original paper (see Breiman [26]) or to Zhang et al. [27] which
gives a good description.

The RF model is based on decision tree learning and aims at correcting several
drawbacks of this type of learning by constructing a set of partially independent
decision trees. Following Breiman [26] notations, those are constructed following
this process.

Create an ensemble of B decision trees T ∗1 , ..., T ∗B . In order to grow each tree T ∗i
with some independance,

1. Bootstrap the training dataset to create C∗N = {(X∗i , Y ∗i ), i = 1, ..., N} by
randomly, with-replacement drawing N samples.

2. Place all the training data are in the root node N .

3. Draw mtry < p predictor variables from the set of all predictors, creating the
ensemble of predictors S.

4. Partition N into N1 and N2 by selecting a predictor variable x ∈ S and spliting
cases as follow : x ≤ c goes in N1 and x > c cases goes in N2 . Note that x and
c ∈ Rd for a multi-outputs regression with d outputs. The value of c is chosen
in such a way that it maximises the inter-class variance (having subsets whose
values of the target variable are as dispersed as possible).

5. For each new node Ñ that has more than nodesize cases, create two new
nodes by repeating steps (3) and (4), if there is variation in the values of the
response and in the values of at least one predictor. Otherwise Ñ become a
terminal node of the tree T ∗i .
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6. The prediction of tree T ∗i for a given X is calculated by applying all the
partitioning rules learned by the tree during steps (2), (3) and (4) to X and
by averaging the predictors of the training phase that are in the terminal node
reached by X. This prediction is noted Ŷ ∗i .

The prediction of the RF is determined by calculating the average of the predic-
tions of each tree in the forest, for a certain input X, it is noted

E
rf

[f(X)] =
1

B

B∑
i=1

Ŷ ∗i

We also need to acces to the uncertainty of the RF over its prediction Erf [f(X)],
knowing Varrf [f(X)]. Several methodologies have been proposed for this purpose,
Zhang et al. [27] proposes a comparison of the main ones and seems to show that
the "out-of-bag" error would be one of the most interesting. The idea being to learn
the error distribution D = Y −Erf [f(x)] and thus to have access to the uncertainty
on the predictions Varrf [f(x)] = E[(Y − Erf [f(X)]]2] = E[D2]. We therefore want
to calculate the error D of a given prediction Erf [f(X)] using a RF that has not
been trained on Y . For each Yi, i = 1, ..., N we need a forest RF(i) constructed
without (Xi, Yi). Following [27], such a forest is available for each i = 1, ..., N due
to the bootsrap sampling in step (1) and this forest is composed of approximately
(n−1

n
)n × B ≈ exp(−1) × B ≈ 0.368 × B trees. For each i = 1, ..., n , we can use

RF(i) to obtain a prediction of Yi, denoted as Erf [f(X)](i). We thus have access to
the OOB error D = {Yi − Erf [f(X)](i)}Ni=1. By calculating the mean of this error
squared, we access to the uncertainty of a new prediction

Var
rf

[f(x)] =
1

N

N∑
i=1

(Yi − E
rf

[f(X)](i))
2

An important issue that may be raised is whether 0.368 × B corresponds to a
sufficient data set to properly assess this uncertainty knowing that we generally do
not have access to large dataset with History Matching.

• Bayesian Neural Networks

We will now describe Bayesian Neural Networks (BNN) which can be summarized as
stochastic neural networks trained using bayesian inference. It is therefore important
to recall the functioning of a classical neural network (NN).

The purpose of a neural network is to represent a function y = NN(x). They
are built with an input layer l0 = x, which represents the input data of the model,
followed by a number of hidden layers li, i = 1, ..., n− 1 and an output layer ln = y
which represents the data predicted by the model. In the classical NN feedforward,
each layer is a linear transformation (li = Wili−1 + bi) of the previous one, followed
by a non-linear operation (σ(.)), known as activation function.
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Figure 6: Artificial neural network (a), stochastic activation neural networks (b),
stochastic coefficients neural networks (c). From Jospin et al. [25]

.

l0 = x

li = σ(Wili−1 + bi),∀i ∈ [1, n− 1]

ln = y

There are more complex architectures involving particular layers (Convolutional
Neural Networks) or whose layers are linked recursively (Recurent Neural Networks).
Here we restrict ourselves to simple feedforward neural networks (Fig. 6a). A neural
network is thus a set of functions isomorphic to a set of possible coefficients θ where
θ represents all weights Wi,∀i ∈ [1, n− 1] and biases bi,∀i ∈ [1, n− 1]. The training
of a NN is thus done by regressing the parameters θ using the training data set.
The standard approach is to approximate a minimal cost point estimate θ̂ using the
back-propagation algorithm.

Stochastic (or bayesian) neural networks are constructed by introducing stochas-
tic components into the NN by giving the networks stochastic activation (see Fig.
6b) or stochastic weights (see Fig. 6c).

As mentioned earlier, the objective of BNNs is primarily to get a better idea
of the uncertainty of the model on its predictions. This is achieved by comparing
the predictions of several possible parameterisations of the model. Following Jospin
et al. [25], it can be summarized as follow

θ ∼ p(θ)

y = NNθ(x) + ε (17)

where ε represents random noise to account for the fact that the function NN(.)
is just an approximation.

In order to design a BNN, it is necessary to follow the following steps

1. Choose a neural network architecture

2. Choose a prior distribution over the possible model parametrization p(θ)
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3. Choose a prior confidence in the predictive power of the model p(y|x, θ)
4. Compute the posterior distribution p(θ|(X, Y )) using bayesian inference

p(θ|(X, Y )) =
p(Y |X, θ)p(θ)∫

Θ
p(Y |X, θ′)p(θ′)dθ′

∝ p(Y |X, θ)p(θ)

The difficulty of step (4), as is often the case in Bayesian inference, comes from
the fact that the calculation of the term

∫
Θ
p(Y |X, θ′)p(θ′)dθ′ is often intractable.

For this, two approaches can be used. Directly estimate the posterior distribution
using a Markov Chain Monte Carlo (MCMC) algorithm or use a variational inference
approach, which learns a variational distribution to approximate the exact posterior.

Once the posterior is approximated, it becomes possible to calculate for an in-
put x a marginal probability distribution of the output y, which will model the
uncertainty on the latter

p(y|x,D) =

∫
θ

p(y|x, θ′)p(θ′|(X, Y ))dθ′

In practice p(y|x,D) is calculated using eq. 17. Thus the prediction of the model
for a given x∗ will be

E[f(x∗)] =
1

|Θ|
∑
θi∈Θ

NNθi(x
∗)

And its uncertainty about this prediction will be

Var[f(x∗)] =
1

|Θ| − 1

∑
θi∈Θ

(NNθi(x
∗)− ŷ)(NNθi(x

∗)− ŷ)T

In this work we will use https://github.com/Harry24k/bayesian-neural-network-pytorch
library to create BNN models.

3.4 CMIP - Coupled Model Intercomparison Project

The Coupled Model Intercomparison Project seeks to better understand past, present
and future climate changes by studying different types of General Circulation Mod-
els (GCMs). They particularly investigate on Coupled GCMs (like coupled ocean-
atmosphere GCMs). In this kind of experiment, we usually have a model (e.g. an
atmospheric model) and observations on the environment of this model (e.g. obser-
vations of the state of the ocean) which will act as a forcing. In this section, we are
investigating to what extent the model calibration by History Matching is applicable
to this kind of experiment.

As previously explained (section 3.2.2), the fast variable (Y ) of the two-layers
Lorenz-96 can be considered as an approximation of an Atmospheric General Circu-
lation Model (AGCM) and the slow variable (X) as an Oceanic General Circulation
Model (OGCM). For this reason, we can consider the Lorenz-96 as a set of two
independent models that we can try to parameterize independently. We will discuss
the methodology employed for this purpose in the two next subsections.
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3.4.1 AMIP style experiments

In this section, we will investigate learning about parameters from the fast dynamics
alone.

As stated by the World Climate Research Programme (WCRP), an AMIP ex-
periment is an Atmospheric General Circulation Model constrained by a realistic
sea surface temperature and sea ice.

In order to get as close as possible to the experimental conditions of an AMIP,
we must first generate observations of the ocean which we will then use to force
our atmospheric model (the fast component). We will use the history of the slow
component of the model launched with the ground truth parameters for this purpose.
Since we are only interested in the parameterization of the fast component, our model
is therefore the following

1

c

dYj,k
dt

= −bYj+1,k(Yj+2,k − Yj−1,k)− Yj,k +
h

J
X
obsk

Where X
obs

is the current state of the slow component observation register earlier. We
therefore have three parameters to calibrate : h, c and b. A complete description of
the algorithm is available in the appendix (see 0).

In their experiments, Schneider et al. [6] stated that the one-point statistics
(Ȳ1, Y

2
1 ) of the fast variables are not enough to recover our three parameters and

they therefore consider the moment function

fk(Y ) =

(
Yj,1

Yj,1Yj′,1

)
,∀j, j′ ∈ {1, ..., J} (18)

Because the reasons are not explicitly detailed in their paper and because we use
a different parameter search methodology, we will investigate to what extent this is
the case.

3.4.2 OMIP - Ocean Model Intercomparison Project

In this section, we will investigate learning about parameters from the slow dynamics
alone.

need help Parallèlement à un AMIP experiment, nous faisons référence à un
OMIP experiment pour un Oceanic General Circulation Model constrained by the
sea level atmospheric temperature (??).

We are generating the observations in the same way that for an AMIP experi-
ment but instead of generating oceanic observations we are generating atmospheric
observations by saving the fast component history (Y ) run with the ground truth
parameters. We will then force the the oceanic model describe by the X partial
derivative equation

dXk

dt
= −Xk−1(Xk−2 −Xk+1)−Xk + F − hc Ȳ

obsk

The metrics used in this case will be f(X) = (X,X2)T .
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3.5 Dimensionality reduction of the metrics space

In this section, we consider reducing the dimensionality of the metrics using two
types of methods, empirical orthogonal functions (EOFs), also known as principal
component analysis (PCA) based on singular value decomposition (SVD), and then
neural network based autoencoders.

3.5.1 Interest

Training a large number of emulators can be very time consuming. Gaussian process
regressors have a time complexity of o(n3) for their learning phase and when the
number of metrics increases, it can become quite complicated to train p emulators.
Moreover, the information in the chosen parameters can be redundant (see Fig. 25)
and it may therefore seem useful to try to reduce the dimension of the metrics.

3.5.2 Empirical Orthogonal Functions

Empirical Orthogonal Functions is a well studied dimensionality reduction procedure
in the climate sciences community. The idea of this method is to project the variables
into a lower dimensional space by seeking to minimise the correlation between the
different dimensions.

We are therefore looking for a linear combination of the columns maximising the
variance, we will note Y a =

∑p
i=1 aiyi. Its variance is given by Var[Y a] = aTCa

where C is the covariance matrix of Y . For this problem to have a well-defined
solution, an additional restriction must be imposed and the most common restriction
involves working with unit-norm vectors, i.e. requiring aTa = 1. Thus the problem
can be posed as

max
s.c.a

aTCa (19)

aTa = 1 (20)

or by its Lagrangian relaxation maxa a
TCa− λ(aTa− 1) where λ is a Lagrange

multiplier. By deriving with respect to a we then obtain the maximum in Ca−λa =
0⇔ Ca = λa thus represents an eigenvector (of unit norm) and λ is the associated
eigenvalue.

By classifying the eigenvalues (and their associated eigenvectors) by order of
magnitude {a1, a2, ..., ap}, it will then be possible to reconstruct the space Y into a
space Y ′ of dimension n× p′ with p′ < min(n, p) as follows

Y ′ = (Y a1, Y a2, ..., Y ap′)

The variance explained by each of the dimensions corresponds to the eigenvalue
associated with the vectors. Thus the ith dimension explains λi of the variance.

In this work we will use the library scikit-learn to perform the PCA. When this is
not specified, we will use the number of dimensions that explain 99% of the variance,
i.e. we will choose p′ in such a way that

∑p′

i=1 λi ≥ 0.99.
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3.5.3 Autoencoder

Autoencoders are non-linear dimensionality reduction models based on neural net-
works. The idea is to train a neural network to predict its inputs while passing
through a layer where the number of neurons is lower than the number of neurons
in the inputs. This layer is called the bottleneck layer. In order to keep the method-
ology as simple and reproducible as possible, we are interested here in single-layer
autoencoders of the form

lin = y

lbottleneck = σ(Wlin + b) (21)
lout = y

We will take as activation function the σ = tanh function and as loss function
the mean squared error (mse). The number of neurons in the central layer will
always be specified. The training of the model will be done with the library keras
using backpropagation.

To transform the metrics of a sample we use the encoder trainer, i.e. y′ =
σ(Wy + b).
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Figure 7: History Matching performed with GPR emulator on 40 samples for
each wave sampled with maximin LHS. Wave 1 (left), wave 2 (center), wave 3
(right).

4 Experimental results

4.1 Exploratory approach

In this section we will take an exploratory approach to observe the behaviour of
the History Matching methodology applied to Lorenz-96. To do so, we will test the
methodology under several constraints: the choice of metrics, the number of samples
in the parameter space for each wave, the integration scheme of the numerical model
or the effect of noise on the observations.

4.1.1 Metrics choice

The choice of metrics is particularly important for numerical model parameteriza-
tion. As we have explained, Schneider et al. [6] show in their article that the metrics
f(X, Y ) = (X, Ȳ ,X2, XȲ , Ȳ 2)T allow to reconstruct the set of the 4 parameters.

This is confirmed experimentally (see Fig.). A first wave of History Matching
performed with a GPR emulator on 40 samples (sampled with an LHS maximin)
allows to exclude 0.959425 from the parameter space (see Fig. 7(left)) and we can
see that the method converges by excluding 0.99903125 from the parameter space
after three waves (see Fig. 7(right)).

It seems interesting, now that the method has shown its convergence in the
simple case, to determine whether it converges in the case where the metrics cho-
sen represent only the slow component (metrics X and X2) or the fast component
(metrics Ȳ and Ȳ 2). Using the analogy of a coupled ocean-atmosphere model, the
question is whether the whole model can be parameterised by observing only the
atmosphere or by observing only the ocean.

To do this, we will first test the capacity of the model using only observations of
the fast component, first with only the metrics Ȳ and Ȳ 2 and then with the metrics
proposed by Schneider et al. [6] to describe the fast component (see Eq. [18])

It seems that the only metrics Ȳ and Ȳ 2 do not cause the History Matching to
converge. We can indeed see (Fig. 8) in the third wave that the space of excluded
parameters is smaller than that of the second wave. explanation
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Figure 8: History Matching performed with GPR emulator on 40 samples for
each wave sampled with maximin LHS only using fast component metrics (Ȳ , Ȳ 2).
Wave 1 (left), wave 2 (center), wave 3 (right).

Figure 9: History Matching performed with GPR emulator on 40 samples for
each wave sampled with maximin LHS only using Eq. [18] metrics. Wave 1 (left),
wave 2 (center), wave 3 (right).
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Figure 10: History Matching performed with GPR emulator on 40 samples for
each wave sampled with maximin LHS only using Eq. [18] metrics. Wave 1 (left),
wave 2 (center), wave 3 (right).

On the other hand, the metrics described by Eq. 18 seem to converge slowly to
ground truth parameters.

We now want to know whether the metrics describing the slow component alone
can significantly reduce the parameter space. We therefore perform an experiment
using exclusively the metrics f(X) = (X,X2)T .

We can see (Fig. 10) that the use of metrics describing the fast components allow
after a wave to significantly reduce the parameter space (by a factor of about 10)
and thus seem to be much more informative about the state of the system than the
metrics describing the fast component. However, these do not seem to be sufficient
to converge towards the ground truth parameters as is the case when all the metrics
are used (see 7).

4.1.2 Non-iteravtive History Matching

Also, it seems interesting to compare the results obtained using an iterative approach
(see Fig. 7) and using a non-iterative approach, i.e. sampling the parameter space
only once with a larger number of samples in order to train an emulator with smaller
uncertainties on its predictions. The experiment described in Fig. Refreffig:HM
performs 3 waves each using 40 samples, so we will use 40 × 3 = 120 samples to
evaluate the non-iterative approach with the same number of simulated samples as
with the iterative approach.

It seems that an iterative approach to HM is more efficient than a non-iterative
approach. Indeed, the iterative approach reduces the parameter space by 0.99903125
after three waves and a total of 120 samples, while the non-iterative method reduces
it by 0.97761.

This can be explained by the distribution of samples that an iterative approach
leads to. We can indeed see (Fig. 12) that the samples become more and more
concentrated around the ground truth parameters with an iterative approach which
allows the emulator to become more accurate in its predictions in this area.

This leaves an important question. Given a fixed number of samples (due to
limited computational capacity), what would be the optimal distribution of these
samples over a set of waves in order to reduce the NROY estimate as much as possible
while remaining conservative enough to ensure that ground truth parameters are not
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Figure 11: First wave of HM performed with GPR emulator on 120 samples
sampled with maximin LHS

Figure 12: Inputs (generated by LHS sampling) for three waves of History Matching
with 40 samples for each wave using GPR
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Figure 13: First wave of History Matching performed with different levels of noise.
µ = 0.05 (left), µ = 0.1 (center), µ = 0.5 (right).

Figure 14: NROY space after first wave of HM regarding noise variance

rejected.

4.1.3 Noise effect

When parameterising a climate model (of the ocean, atmosphere or other), the
observations are subject to various uncertainties, mainly related to the measuring
instruments used to record them. We are therefore interested here in the effect of
increasing uncertainty on the observations of Lorenz-96.

By

4.1.4 Intergration scheme

The integration scheme, which provides a numerical solution to the system of partial
differential equations describing the dynamic system under study, is accompanied
by an error (which is bounded) intrinsic to it. We can therefore consider this error
as a divergence of the model and it is then interesting to know the impact of such
an error on the parameterisation by History Matching.

We will therefore use here the Euler integration scheme (the one used for the
other experiments is an RK4) and observe the results of 3 waves of History Matching.
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Figure 15: NROY ratio after first wave of HM regarding the number of inital samples
in parameters space using LHS sampling methods.

4.2 Space filling design

4.2.1 Number of samples

As we have described previously (subsection 3.1.1), the number of samples is of great
importance for the parameterisation of dynamic systems. It is recommended, as a
rule of thumb (see Williamson et al. [5]), to use 10× p samples, with p the number
of parameters. In this section, we seek to determine the extent to which this rule is
applicable to the parameterisation of Lorenz-96 with History Matching.

The first thing to note is that a larger number of samples ensures that the
parameter space is reduced to a higher order. Indeed, we can see (Fig. 15) that
the NROY ratio and its variance decrease with the number of initial samples. It is
then necessary to find a compromise between calculation time and performance. It
seems that beyond 60 samples the performance gain is not worth the cost in terms
of computation time, as well as below 20 samples the variance on the NROY space
is too large to obtain consistent results.

We will therefore stay in the [20, 60] sample range for our future experiments.
Note that this seems to confirm the rule of ∼ 10 × p samples which we will apply
for the majority of experiments (unless explicitly stated otherwise).

4.2.2 Sampling methodology

The most widely used sampling methodology for History Matching is the maximin
LHS. Here we want to know whether this shows a significantly better performance
than random sampling and whether the Quasi-Monte Carlo Sampling Sobol method
shows interesting results.

• Random Sampling

It is first interesting to note that random sampling initially reduces the pa-
rameter space significantly after two waves, by 0.99371 (see Fig. 16(enter)).
On the other hand, it seems that when the space is strongly reduced, random
sampling eventually leads to a rejection of the ground truth parameters as can
be seen in Fig. 16(right) where the ground truth value of the parameter b ends
up being ruled-out.
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Figure 16: History Matching performed with GPR for 40 samples per waves sampled
with random sampling. Wave 1(left), wave 2 (center), wave 3 (right).

Figure 17: History Matching performed with GPR for 40 samples per waves sampled
with QMC Sobol sampling. Wave 1(left), wave 2 (center), wave 3 (right).

It might be interesting to see to what extent being less conservative in calcu-
lating implausibility – choosing the v-th maximum value as explained in 3.1.4–
would allow the sampling to converge to the correct parameters.

• Quasi-Monte Carlo with Sobol sequence Sampling

We can first note that the sampling by Quasi-Monte Carlo method with Sobol
sequence allows HM to converge well towards the ground truth parameters.
Moreover, the reduction of the parameter space is of the same order of mag-
nitude as the Latin Hypercube maximin sampling, i.e. 0.99885 (see Fig. 20)
with QMC Sobol sampling and 0.99903125 (see Fig. 7) with LHS maximin
sampling after three waves.

A major advantage of QMC methods is that they are much faster than LHS
sampling which can become costly in terms of computing time when the num-
ber of points to be sampled becomes large which occurs when the remaining
NROY space is small. For this reason, we think that it could be interesting
to consider Quasi-Monte Carlo methods for History Matching as they seem to
show similar performances to the LHS maximin with a reduced computation
time.

• Correlation optimized Latin Hypercube Sampling

It would seem that sampling by LHS with correlation as an optimization crite-
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Figure 18: History Matching performed with GPR for 40 samples per waves sampled
with LHS optimized with correlation criterion. Wave 1(left), wave 2 (center),
wave 3 (right).

Figure 19: History Matching performed with linear regression for 40 samples per
waves sampled with maximin LHS. Wave 1(left), wave 2 (center), wave 3 (right).

rion would be the method that would allow the HM to converge most rapidly
to the ground truth parameters.

4.3 Emulators

In this section, we explore the possibility of replacing Gaussian Processes and linear
regressions as emulators by two other types of statistical models, namely random
forests and Bayesian Neural Networks. We start by evaluating the performance of
the first two types of emulators in order to be able to compare their results with the
two models proposed to replace them.

4.3.1 Linear regressor

It would appear (see Fig. 19) that linear regression models alone do not significantly
reduce the parameter space. In particular, this emulator performs poorly in reducing
the parameter space projected into the c(b) dimension. This can be explained by
the very strong non-linearity and the chaotic aspect of the variable Y where b is
involved.
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Figure 20: History Matching performed with Random Forest Regressors for 40
samples per waves sampled with maximin LHS. Wave 1(left), wave 2 (center), wave
3 (right).

Figure 21: First four waves of History Matching performed in an AMIP style exper-
iment with (Ȳ , Ȳ 2)T metrics.

4.3.2 Gaussian Process regressor

4.3.3 Random Forest

4.3.4 Bayesian Neural Networks

As the Bayesian Neural Networks model has only recently been integrated with the
History Matching library, the experiments for this emulator are not complete enough
and we will not develop this section here. The first results are available in appendix
(see Appendix ??).

4.4 CMIP style experiments

4.4.1 AMIP experiments

Firstly, we can note that History Matching seems to be well applicable in the context
of an AMIP-style experiment. The method converges relatively quickly to the ground
truth parameters (see Fig. 22 and 21) and thus allows to significantly reduce the
parameter space (by an order of 100 to 1000 depending on the metrics used) after a
few waves.

The metrics proposed by Schneider et al. [6], namely Eq. [18], seem to allow
the History Matching parametrization to converge faster towards the ground truth
parameters than the metrics f(Y ) = (Ȳ , Ȳ 2)T even if the latter also allow the HM
to converge. The first metrics reduce the parameter space by 0.99987 after three
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Figure 22: First three waves of History Matching performed in an AMIP style
experiment with Eq. [18] metrics

Figure 23: First three waves of History Matching performed in an OMIP style
experiment with f(X) = (X,X2)T metrics

waves while the second metrics reduce it by 0.99508 after four waves. Moreover, it
seems important to note that the two approaches differ strongly in their logic in that
the metrics described by Eq. [18] describe in a very precise but also very localised
way a part of the state of the system whereas the metrics f(Y ) = (Ȳ , Ȳ 2)T give a
global description of the whole system.

4.4.2 OMIP experiments

We now place ourselves in the context of an OMIP-style experiment, i.e. we seek
to parameterise the slow component by forcing it with observations of the fast com-
ponent (see 3.4.2 for more details). As a reminder, this experiment tries to come
close to the parameterisation of an oceanographic model that would be forced with
observations of the atmosphere.

As one might have expected, the parameterisation of this type of dynamic model
does not pose a problem. Indeed, in the framework of the parameterisation of OMIP-
style experiments, we only have three parameters to tune, namely h, F and c, which
excludes the parameter b which, as we have seen in the previous experiments, is the
most difficult parameter to tune. We can thus see (Fig. 23) that after one wave
of MH we have reduced the parameter space by 0.97971 and by 0.98032 after three
waves.
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4.4.3 Conclusion CMIP

In general, HM seems to be suitable for CMIP-style experiments. We have seen
that it is able to significantly reduce the parameter space for both the slow and
fast components. It thus seems possible, by considering two independent models, to
overlap parameters that will allow a coherent system.

Aide pour finir : sur l implication de l application pour modele couples ocean
atmosphere en mip style experiment

4.5 Dimensionality Reduction of metrics space

The reduction of the dimensionality of the space of metrics could, if it is applicable in
the framework of History Matching, prove to be particularly interesting by allowing
to significantly reduce the training time of prediction of the emulator used. We
will observe the results obtained for two dimensionality reduction methodologies,
a linear, knowing the Empirical Orthogonal Functions (or Principal Component
Analysis) and a non-linear, knowing Autoencoders. We will mainly use two criteria
to evaluate these methods, the mean square error of the recontrusion of a set of
validation metrics and the proportion of the NROY space remaining at each wave.

4.5.1 Principal Component Analysis

We test here the application of the EOF for the reduction of dimmensionality of
metrics space.

We can see (Tab. 2) that the NROY space reduces significantly after two waves
and mainly that it reduces by the same order of magnitude as during the HM without
dimensionality reduction (see Fig. 7). However, the dimension of the metrics is
considerably smaller here, since we have 10 dimensions compared to 180 for the HM
without dimensionality reduction, so the computational cost is reduced by a factor
of 18 for both the training and the prediction of the model.

Table 2: Mean Squared Errors for PCA with 10 components (explained variance
≥ 0.99)

wave train MSE val MSE % of original space
1 0.0186 0.0571 0.053
2 0.0574 0.1010 0.01739
3 0.0321 0.0415 0.00191

But as we can see in Fig. 24, at the third wave, HM rejects the ground truth
parameters. This is certainly explained by the uncertainty not taken into account
on these metrics (we have an MSE of about 4% on the reconstruction of the valida-
tion set at the third wave). It therefore seems necessary to take into account this
uncertainty on our metrics which will then reduce the capacity of the method in its
reduction of the parameter space.
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Figure 24: First three waves of History Matching performed with PCA (10 cp).
First wave (left), second wave (center), third wave (right)

4.5.2 Autoencoder

Table 3: Mean Squared Errors for Autoencoder with 32 dimensions

wave train MSE val MSE % of original space
1 0.004 0.1251 0.07115
2 0.0045 0.2238 0.02693
3 0.0057 0.1369 0.09456

We notice that the mean square error of the validation dataset reconstruction is much
larger with Autoencoders than with a PCA. We also notice that the mean square
error on the training set is of the same order of magnitude for the Autoencoders and
for the PCA, it is the mean square error of the validation set that is much larger
for the Autoencoders, probably due to the larger number of parameters compared
to the size of the data set resulting in some overfitting from the Autoencoder. Thus
we can see that the HM does not converge to the ground truth parameters, the
uncertainty on the metrics being too large.

Several methods have been considered to solve this problem, including the use
of a regularisation term during training (norm L1, L2 or dropout) but this brings
an additional concept into play and we prefer to restrict ourselves to the following
method. Rather than training the Autoencoder only on the simulated data for each
wave, we will train it on all the generated data, i.e. for wave n we will use the data
((X1, Y1), ...(Xn, Yn)) where (Xi, Yi) corresponds to the data simulated during wave
i.

Table 4: Mean Squared Errors for Autoencoder with 32 dimensions with additive
approach

wave train MSE val MSE % of original space
1 0.0043 0.1255 0.0510
2 0.0099 0.1065 0.03755
3 0.0132 0.0647 0.02638

We thus obtain better results, both for the convergence of the HM to the ground
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truth parameters and for the mean square error, whose value on the training set is
now closer than that of the validation set, which implies a less important overfitting.
Thus the calibration by History Matching with dimension reduction by Autoencoder
to 12 dimensions made it possible to reduce the space of the parameters by 0.97362
while preserving the ground truth parameters which seems interesting to us since it
also makes it possible to reduce the time of training and prediction by more than 5
(with 32 dimensions)

We therefore consider that Autoencoders could be particularly interesting when
the space of metrics is high dimensional in order to reduce the learning and prediction
time of the emulator. We believe that these will perform best in the case where the
number of parameters to be tuned is large and the simulated dataset is therefore also
relatively large and the metrics have particularly non-linear structures. It would then
be interesting to study the application of Autoencoders to more complex structures
and more adapted to the data.

5 Opening

5.1 Environemental and societal impact

5.2 Opening

6 Conclusion
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7 Appendix

7.1 Bayesian Neural Networks Results

7.2 Algorithms

Algorithm 1 AMIP style experiment with two layers Lorenz96 model
Require: pT (the ground truth parameters), P (the set of tested parameters)
metrics← ()
l96T ← L96(pT )
l96T .iterate(10) . Reach the attractor
l96T .erase_history() . Erase history
l96T .iterate(100)
X_hist← l96T .history_X . This is our ocean observations
for p ∈ P do . Tested parameters

l96← L96(p)
l96.iterate(10) . Reach the attractor
l96.erase_history() . Erase history
l96.iterate(100)
Y_hist← l96.history_Y . Store Y history
m← compute_metrics(Y_hist)
metrics← (metrics,m)

end for
Return(metrics)

Here L96(.) is the Lorenz96 model, it has two functions, knowing iterate(n) that
ierate the model for n iterations and store the histories in history_X and history_Y
and erase_history() that delete the previously stored histories. The compute_metrics()
function compute the metrics described earlier.

7.3 Pictures
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Figure 25: Correlation of metrics (X, Ȳ ,X2, XȲ , Ȳ 2)T for 40 samples generated
with LHS sampling method.

36



References
[1] George W Platzman. The ENIAC Computations of 1950 – Gateway to Numer-

ical Weather Prediction. Bulletin of the American Meteorological Society, 60
(4):302–312, 1979.

[2] S. Manabe and K. Bryan. Climate calculations with a combined ocean-
atmosphere model. J. Atmos. Sci, 26(4):786–789, 1969.

[3] Syukuro Manabe and Richard T Wetherald. The Effects of Doubling the CO2
Concentration on the climate of a General Circulation Model. Journal of At-
mospheric Sciences, 32:3–15, 1975.

[4] James Salter and Daniel Williamson. A comparison of statistical emulation
methodologies for multi-wave calibration of environmental models. Environ-
metrics, 27, 12 2016. doi: 10.1002/env.2405.

[5] Daniel Williamson, Adam Blaker, and Bablu Sinha. Tuning without over-
tuning: parametric uncertainty quantification for the nemo ocean model.
Geoscientific Model Development Discussions, pages 1–41, 08 2016. doi:
10.5194/gmd-2016-185.

[6] Tapio Schneider, Shiwei Lan, Andrew Stuart, and João Teixeira. Earth system
modeling 2.0: A blueprint for models that learn from observations and targeted
high-resolution simulations. Geophysical Research Letters, 44, 08 2017. doi:
10.1002/2017GL076101.

[7] Peter S. Craig, Michael Goldstein, Allan H. Seheult, and James A. Smith. Pres-
sure matching for hydrocarbon reservoirs: A case study in the use of bayes linear
strategies for large computer experiments. In Constantine Gatsonis, James S.
Hodges, Robert E. Kass, Robert McCulloch, Peter Rossi, and Nozer D. Singpur-
walla, editors, Case Studies in Bayesian Statistics, pages 37–93, New York, NY,
1997. Springer New York. ISBN 978-1-4612-2290-3.

[8] Ian Vernon, Michael Goldstein, and Richard Bower. Galaxy formation: a
bayesian uncertainty analysis. Bayesian Analysis, 5, 12 2010. doi: 10.1214/
10-BA524.

[9] Ioannis Andrianakis, Ian Vernon, Nicky McCreesh, Trevelyan McKinley, Jeremy
Oakley, Rebecca Nsubuga, Michael Goldstein, and Richard White. Bayesian
history matching of complex infectious disease models using emulation: A tu-
torial and a case study on hiv in uganda. PLoS Computational Biology, 11, 01
2015. doi: 10.1371/journal.pcbi.1003968.

[10] Daniel Williamson, Michael Goldstein, Lesley Allison, Adam Blaker, Peter
Challenor, Laura Jackson, and Kuniko Yamazaki. History matching for ex-
ploring and reducing climate model parameter space using observations and a
large perturbed physics ensemble. Climate Dynamics, 41:1703–1729, 10 2013.
doi: 10.1007/s00382-013-1896-4.

37



[11] V. Joseph. Space-filling designs for computer experiments: A review. Quality
Engineering, 28:28–35, 01 2016. doi: 10.1080/08982112.2015.1100447.

[12] Luc Pronzato and Werner Müller. Design of computer experiments: Space
filling and beyond. Statistics and Computing, pages 1–21, 05 2011. doi: 10.
1007/s11222-011-9242-3.

[13] M.E. Johnson, L.M. Moore, and D. Ylvisaker. Minimax and maximin dis-
tance designs. Journal of Statistical Planning and Inference, 26(2):131–
148, 1990. ISSN 0378-3758. doi: https://doi.org/10.1016/0378-3758(90)
90122-B. URL https://www.sciencedirect.com/science/article/pii/
037837589090122B.

[14] M. Mckay, Richard Beckman, and William Conover. A comparison of three
methods for selecting vales of input variables in the analysis of output from a
computer code. Technometrics, 21:239–245, 05 1979. doi: 10.1080/00401706.
1979.10489755.

[15] Nan Chen and L. Hong. Monte carlo simulation in financial engineering. pages
919–931, 01 2008. ISBN 978-1-4244-1306-5. doi: 10.1109/WSC.2007.4419688.

[16] Sergei Kucherenko, Daniel Albrecht, and Andrea Saltelli. Exploring multi-
dimensional spaces: a comparison of latin hypercube and quasi monte carlo
sampling techniques. 05 2015.

[17] D. J. McNeall, P. G. Challenor, J. R. Gattiker, and E. J. Stone. The poten-
tial of an observational data set for calibration of a computationally expensive
computer model. Geoscientific Model Development, 6(5):1715–1728, 2013. doi:
10.5194/gmd-6-1715-2013. URL https://gmd.copernicus.org/articles/6/
1715/2013/.

[18] Redouane Lguensat, Pierre Tandeo, Pierre Ailliot, Manuel Pulido, and Ronan
Fablet. The analog data assimilation. Monthly Weather Review, 145:4093–4107,
10 2017. doi: 10.1175/MWR-D-16-0441.1.

[19] Edward Ott, Brian Hunt, Istvan Szunyogh, Aleksey Zimin, Eric Kostelich,
Matteo Corazza, Eugenia Kalnay, D. Patil, and James Yorke. A local en-
semble kalman filter for atmospheric data assimilation. Tellus, 10 2004. doi:
10.1111/j.1600-0870.2004.00076.x.

[20] Edward Lorenz. Optimal sites for supplementary weather observations: Simu-
lation with a small model. 06 2001.

[21] J.L. Anderson. An ensemble adjustment kalman filter for data assimilation.
Monthly Weather Review, 129:2884–2903, 12 2001.

[22] David Gagne, Hannah Christensen, Aneesh Subramanian, and Adam Monahan.
Machine learning for stochastic parameterization: Generative adversarial net-
works in the lorenz’96 model. Journal of Advances in Modeling Earth Systems,
12:e2019MS001896, 03 2020. doi: 10.1029/2019MS001896.

38

https://www.sciencedirect.com/science/article/pii/037837589090122B
https://www.sciencedirect.com/science/article/pii/037837589090122B
https://gmd.copernicus.org/articles/6/1715/2013/
https://gmd.copernicus.org/articles/6/1715/2013/


[23] Edward N. Lorenz. Predictability - a problem partly solved. Cambridge Uni-
versity Press, 1996.

[24] Stephan Rasp. Online learning as a way to tackle instabilities and biases in
neural network parameterizations, 07 2019.

[25] Laurent Valentin Jospin, Wray Buntine, Farid Boussaid, Hamid Laga, and Mo-
hammed Bennamoun. Hands-on bayesian neural networks – a tutorial for deep
learning users, 2020.

[26] L Breiman. Random forests. Machine Learning, 45:5–32, 10 2001. doi: 10.
1023/A:1010950718922.

[27] Haozhe Zhang, Joshua Zimmerman, Dan Nettleton, and Daniel Nordman. Ran-
dom forest prediction intervals. The American Statistician, 74:1–20, 04 2019.
doi: 10.1080/00031305.2019.1585288.

39


	Introduction
	Scope
	Methodology
	History Matching
	Space filling design
	Numerical simulation and metrics choice
	Statistical emulators
	Implausibilty and parameters space reduction
	Refocussing

	Numerical model - Lorenz 96
	Model description and metrics
	Interest
	Limits

	Statistical emulators
	Definition
	Commonly used emulators
	Emulators from the machine learning community

	CMIP - Coupled Model Intercomparison Project
	AMIP style experiments
	OMIP - Ocean Model Intercomparison Project

	Dimensionality reduction of the metrics space
	Interest
	Empirical Orthogonal Functions
	Autoencoder


	Experimental results
	Exploratory approach
	Metrics choice
	Non-iteravtive History Matching
	Noise effect
	Intergration scheme

	Space filling design
	Number of samples
	Sampling methodology

	Emulators
	Linear regressor
	Gaussian Process regressor
	Random Forest
	Bayesian Neural Networks

	CMIP style experiments
	AMIP experiments
	OMIP experiments
	Conclusion CMIP

	Dimensionality Reduction of metrics space
	Principal Component Analysis
	Autoencoder


	Opening
	Environemental and societal impact
	Opening

	Conclusion
	Appendix
	Bayesian Neural Networks Results
	Algorithms
	Pictures


