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1 Introduction

As explained in Maronna et al. (2006), any statistical method is based on a number of
assumptions, whether implicit or explicit. The most widely used framework is based on
the idea that observations follow a Gaussian distribution. This hypothesis is essentially
based on one of the fundamental theorem of probability, namely the limit central theorem,
which states that the empirical mean of independent and identically distributed random
variables tends towards a normal distribution. A large number of statistical tools and
methods have been studied in this framework and are, thus, based on solid theoretical
results but also have the advantage of being generally accessible from a computational
point of view. But ”real world problems” usually come with datasets that fall outside the
classical statistical framework of independant and identically distributed (i.i.d) observa-
tions with Gaussian or sub-Gaussian behaviours. Indeed, it is common for data from
concrete experiments to be corrupted by outliers or to exhibit heavy-tailed distributions
undermining many of the methods used by data scientists such as the classical empirical
mean or the Maximum Likelihood Estimate. This led to the creation of a new field of
statistics in the 1960s with the work of John Tuckey (Tukey (1962)), Peter Huber (Huber
(1964)) and Franck Hampel (Hampel (1973)) whose implementation was made possible
by the concomitant increase in computing power, which made it possible to envisage
heavier computing methods. These methods have become even more necessary with the
advent of modern machine learning and the very large data sets over which data-scientists
generally have little control.

Through this report, we seek to give an idea of the different issues of robust estimation,
whether for the construction of estimators from corrupted datasets (see 2.1) or for the
detection of outliers (see 3.3). In this purpose, we describe in a first time the broad
outlines of this field of statistics (see 2.2), we then introduce the estimator proposed in
Lecué and Lerasle (2017), describing the theoretical framework on which it is based (see
3.1) and its theoretical properties (see 3.4) and practical apects (see 3.2) .

2 Robust estimation

2.1 Data corruption

Real datasets often contain outliers, that is data that differ more or less greatly from
other observations.
Outliers are often a problem in applications of statistics and machine learning because
they may break classical estimators performance, whose theoretical guarantees are often
derived from assumptions that does not take them into account (like the i.i.d assump-
tion).
Part of those corrupted data are generally removed during the data cleaning step that is
part of every data science project.
However, this process can get very complicated in the following cases :

1. High-dimensional statistic : the peculiarity of high-dimensional spaces makes it
hard to figure out which data is problematic. Even nice gaussian vectors exhibit
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odd properties in this setting (see chapter 1 of Giraud (2021))

2. Big Data : a dataset may simply be too big to perform a thorough examination of
each data point.

3. Heavy-tailed distributions : outliers can be part of the data-generating process if
the latter is a heavy-tailed distribution (this is common occurence in finance for
instance).

4. Outliers detection : last but not least, our main goal might be to detect outliers,
like in the case of fraud detection or terrorist activity surveillance. Removing them
is then out of question.

Considering the aforementioned obstacles, we would like to build estimatiors able to
resist (and if possible, to detect) outliers, that is estimators whose performance is as close
as possible as the one we would get without outliers in our dataset. That is the whole
point of the field of Robust Estimation.

2.2 A quick review of robust estimation

With the formalisation of the robust estimation problem, a variety of estimators have
appeared. We focus here particularly on the location estimators of central tendency but
many works have been proposed for the scale estimate (with the interquantile range or
the median deviation) or the correlation estimate (with for example the Spearman rank
correlation).

A very simple idea when trying to estimate the central tendency of a sample that
could potentially have been corrupted by outliers is to remove extreme values, i.e. the
alpha× n smallest samples and the α× n largest samples. This is what is formalised by
the α-trimmed mean, for α ∈ [0, 1

2
) :

T̄α =
1

1− 2α

ˆ 1−α

α

F̂−1(t)dt

with F̂ being the empirical cumulative distribution function of the sample. On the other
hand, Peter Huber proposes in Huber (1964) a generalization of the Maximum Likelihood
Estimate, namely the M-estimators. Let us begin by briefly recalling the basic principle
of the maximum likelihood estimator. Let x1, ..., xn be a sample of observations such that

xi = µ+ ui (i = 1, ..., n)

where the errors (ui)
n
i=1 are random variables with distribution function F0. Then

x1, ..., xn are i.i.d with common distribution function F (x) = F0(x − µ). Then the joint
density of the observations is given by

L(x1, ..., xn;µ) =
n∏

i=1

f0(xi − µ)

where f0 = F ′
0. And the Maximum Likelihood Estimate µ is

µ̂ = argmaxµ L(x1, ..., xn;µ) (1)
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If we knew exactly F0 the MLE would be optimal but as we stated earlier, it is
generally not the case and for this reason we seek estimators that are nearly optimal in
the normal case but also in cases deviating from the Gaussian framework. M-estimators
proposed by peter Huber are then defined by

µ̂ = argminµ

n∑
i=1

ρ(xi − µ)

where ρ = − log f0. Thus we see that ρ(x) = x2 is optimal in the Gaussian case and it
leads to the least squares estimator. The Huber function given by

ρk(x) = x2
1|x|<k + (2k|x| − k2)1|x|≥k (2)

brings to important M-estimates because it leads to the limit cases of the mean and the
median when K → ∞ and K → 0.

2.2.1 Quantifying robustness with breakdown points

In order to quatify the robustness of an estimator T to the corruption of a dataset
DI by outliers DO , the Machine Learning Community has introduced the notion of
breakdown point. If by an adversarial choice of a corrupted dataset DO one can make
T (DI ∪ DO) − T (DI ) arbitrarly large, we say that the estimator T breaks down. We

call breakdown point the minimal proportion |DI |
|DO |+|DO | under which the estimator breaks

down :

ϵ∗(T,DI ) = min
m∈N

{
|DO |

|DI |+ |DO |
: sup

DO :|DO |=m

|T (DI ∪ DO)− T (DI )| = ∞

}
(3)

Thus, in the 1−dimensional case, the empirical mean has a breakdown point of 1
|DI |+1

because by adding a single outlier to the dataset one can make this estimator arbitrarily
large. This is therefore the worst breakdown point value that an estimator can take. On
the opposite, the empirical median has a breakdown point de 1/2 since it takes half of the
observations to make this estimator arbitrarly large. We can see with these two trivial
examples that the notion of breakdown point allows us to quantify the robustness of an
estimator confirming the idea that the empirical mean is not very robust to outliers when
the empirical median is the most robust estimator in a unidimensional framework.

Another point of view is proposed in Lecué and Lerasle (2017), focusing on the risk
involved in a certain estimator. They define the breakdown number as the minimum
number of outliers needed in a dataset to break the performance of an estimator.

Definition 2.1. Let δ ∈ (0, 1),R > 0, N ≥ 1, F be a class of functions from X to R and
P be a set of distributions on X ×R. Let T :

⋃
n≥1(X ×R)n 7→ F denote an estimator

and let D = {(Xi, Yi)
N
i=1} be a dataset made of N i.i.d random variables with a common

distribution in P. For any P ∈ P, let f ∗
P ∈ argminf∈F E(X,Y )∼P [(Y − f(X))2]. The

breakdown number of the estimator T on the class P at rate R with confidence δ is
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K∗
ML(T,N,R, δ,P) = min{k ∈ Z+ : inf

P∈P
PD∼P⊗n( sup

|O|=k

∥T (D∪O)−f ∗
P∥L2(PX)≤R) ≥ 1−δ}

where PX denotes the marginal on X of P .

Minimax rates of cv as benchmark rates of cv. For any class P containing the Gaus-
sian model for all R < R(δ, F ) (minimax rate) it is clear that K∗ = 0. On s’intéresse
au ratio R ≥ R(δ, F ) et plus particuliérement au ratio de l’ordre de R(δ, F ) car estima-
teur avec K∗ > 0 sont minimax (statistiquement optimaux) même si corrompu par K∗

outliers.
Also we may show the following relation between Relation breakdown point and break-

down number :

ϵ∗(T,D) ≥ 1 +K∗

1 +K∗ +N
(4)

The breakdown number of the MOM estimator is given in theorem (5.1) in Appendix.

3 An example of a robust estimator : MOM estima-

tor

3.1 Theoretical framework

Let X denote a measurable space and let (X, Y ), (Xi, Yi)i∈[N ] denote random variables
taking values in X × R. Let P denote the distribution of (X, Y ) and, for i ∈ [N ], let Pi

denote the distribution of (Xi, Yi)
Let F denote a convex class of functions f : X → R and suppose that F ⊂

L2
P ,E [Y 2] < ∞. For any (x, y) ∈ X × R, let ℓf (x, y) = (y − f(x))2 denote the square

loss function and let f ∗ denote an oracle

f ∗ ∈ argmin
f∈F

Pℓf where ∀g ∈ L1
P , Pg = E[g(X, Y )].

For any Q ∈
{
P, (Pi)i∈[N ]

}
and any p ⩾ 1, let ∥f∥Lp

Q
= (Q|f |p)1/p the Lp

Q-norm of f

whenever it’s defined. Finally, let ∥ · ∥ be a norm defined on the span of F ; ∥ · ∥ will be
used as a regularization norm.

3.1.1 Interest

Informally, the MOM-estimator can be defined as followed : divide your data into blocks
and estimate the expectation by the median of the empirical means respectively computed
over each block.

The MOM-estimator that we will define in the next section have many upsides, the
most prominent ones being that it is easy to compute and to understand, and that it has
theoretical guarantees under minimal assumptions.
More precisely, we make basically no assumptions over the distribution or the dependance
structure of the outliers. Furthermore, the assumptions we make over the distributions
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of the informative data P and (Pi)i∈[N ] only involve that the latter have first and second
moment, which make the MOM estimator particularly adapted to deal with heavy-tailed
processes.
We will now expand on the two key ingredients of the MOM procedure:

1. turn the minimization problem into a minimaximization one, using the linearity of
the expectation:

argmin
f∈F

E((Y − f(X))2) = argmin
f∈F

sup
g∈F

E((Y − f(X))2 − (Y − g(X))2)

2. estimate the unknown expectation by the empirical Median-of-Means (MOM) in-
stead of the empirical mean.

Let’s start by defining the latter.

3.1.2 Definition

Let K denote an integer smaller than N and let B1, . . . , BK denote a partition of [N ]
into blocks of equal size N/K (w.l.o.g. we assume that K divides N and that B1 is made
of the first N/K data, B2 of the next N/K data, etc.). For all function L : X ×R → R
and k ∈ [K], let PBk

L = |Bk|−1∑
i∈Bk

L (Xi, Yi) . Then MOMK(L ) is a median of the
set of K real numbers {PB1L , · · · , PBK

L } .
We will make an extensive use of empirical medians and quantiles in the following.

We now precise some conventions used repeatedly hereafter. For all α ∈ (0, 1) and real
numbers x1, . . . , xK , we denote by

Qα (x1, . . . , xK) = {u ∈ R : |{k ∈ [K] : xk ⩾ u}| ⩾ (1− α)K, |{k ∈ [K] : xk ⩽ u}| ⩾ αK} .

Any element in Qα(x) is a (1− α)-empirical quantile of the vector x1, . . . , xK . Hereafter,
Qα(x) denotes an element in Qα(x). For all x = (x1, . . . , xK) , y = (y1, . . . , yK) and t ∈ R,

Qα(x) ⩾ t iff supQα(x) ⩾ t
Qα(x) ⩽ t iff inf Qα(x) ⩽ t

z = Qα(x) +Qα(y) iff z ∈ Qα(x) +Qα(y)

where in the last inequality we use the Minkowsky sum of two sets. More generally,
inequalities involving are always understood in the worst possible case.

We can now give a formal definition of the MOM-estimator :

Definition 3.1. Let α ∈ (0, 1) and K ∈ [N ]. For all functions L : X × R → R
the α-quantile on K blocks of L is Qα,K(L ) = Qα

(
(PBk

L )k∈[K]

)
. In particular, the

Median-of-Means (MOM) of L on K blocks is defined as MOMK(L ) = Q1/2,K(L ). For
all f, g ∈ F , the MOM test on K blocks of g against f is defined by

TK(g, f) = MOMK (ℓf − ℓg)

and, for a given regularization parameter λ ⩾ 0, its regularized version is

TK,λ(g, f) = MOMK (ℓf − ℓg) + λ(∥f∥ − ∥g∥).
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3.1.3 From minimization to minimaximization:

One may want plug the estimator directly into the minimization problem instead of the
empirical mean. However, doing so lead to suboptimal minimax rate, mostly because the
non-linearity of the median that prevent to use similar arguments used for the empirical
mean.
Though the minimization and minimaximizations problems are equivalent when the un-
known expectation is involved, it is easy to see that it is no longer the case when the
latter is replaced by the MOM estimator, due (again) to the non-linearity of the median.
We will not expand on this point and invite the reader to dive into a more recent paper of
the authors, Lecué et al. (2018), where they study the MOM-estimator for classification
problems without minimaximization transformation.

3.2 Estimateur MOM en pratique

3.2.1 Algo ADMM/LASSO

In this section, we show an implementation of the MOM estimator in the particular case
of the linear model with LASSO regularization, called MOM LASSO.
We will see that algorithms used to solve the minimization problem to compute the
classical LASSO estimator can easily be adapated to the min-max problem. The MOM
LASSO minimaximization problem is formulated as follow :

t̂K,λ ∈ argmin
t∈Rd

sup
t′∈Rd

TK,λ (t
′, t)

where TK,λ (t
′, t) = MOMK (ℓt − ℓt′) + λ (∥t∥1 − ∥t′∥1) ,MOMK (ℓt − ℓt′) is a median of

the set of real numbers {PB1 (ℓt − ℓt′) , · · · , PBK
(ℓt − ℓt′)} and for all k ∈ [K],

PBk
(ℓt − ℓt′) =

1

|Bk|
∑
i∈Bk

((Yi − ⟨Xi, t⟩)2 − (Yi − ⟨Xi, t
′⟩))2

One (among many others) algorithms used to compute the LASSO estimator is the
ADMM (Alternating Direction Method of Multipliers) which belong to the class of the
Douglas-Ratchford convex optimization methods. In figure 1 is presented the MOM
version of the ADMM algorithm. The idea is to turn the original algorithm based on a
sequence of sequence of descents into one based on a sequence of alternating descents (in
t) and ascents (in t′).

As we can see in the figure (3.2.1), the addition of a single outlier can significantly
degrade the performance of the classical LASSO algorithm. The MOM ADMM algorithm
seems to be much more robust to different types of data corruption.

3.2.2 Adaptative choice of hyper-parameters

When using the MOM estimator, it is necessary to choose values for the hyper-parameters,
namely the number of blocks K and the regularisation parameter λ. The method that
is classically used in Machine Learning to approximate the optimal values of the hyper-
parameters is the V -fold Cross Validation but, in the context of robust estimation, it does
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Figure 1: An ADMM algorithm for the minimaximization MOM estimator

Figure 2: Performance of ADMM and MOM ADMM in term of l2 error. Adding one outlier
at index 100 (left), evolution of the l2 error regarding the proportion of outlier (right)
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Figure 3: Adaptative choice of K and λ with cross validation on sparse data (left). Adaptative
choice of K and λ with cross validation on sparse corrupted data (right).

not seem to be optimal because the test sets might have been corrupted by outliers. The
authors of Lecué and Lerasle (2017) therefore propose a more robust procedure, adapted
to the MOM estimator which shows good empirical results. The procedure simply re-
places the empirical mean estimator classically used in the classical Cross Validation
with the MOM estimator and also replaces the mean over the V partitions with a me-
dian. They therefore propose the following hyper-parameter selection procedure: Deux
hyperparamètres K̂ et λ

Definition 3.2 (Median of Mean V -fold Cross Validation). Let (f̂
(v)
K,λ : K ∈ GK , λ ∈ Gλ)

be a family of estimators with GK ⊂ [N ] and Gλ ⊂ (0, 1]. The Median of Mean V -fold

Cross Validation procedure associated to this family of estimators is given f̂
(v)

K̂,λ̂
where

(K̂, λ̂) is minimizing the MomCvV criteria

(K,λ) ∈ GK × Gλ → MomCvV (K,λ) = Q1/2(MOM
(v)
K′ (lf̂ (v)

K,λ
)vin[V ])

where ∀v ∈ [V ], f ∈ F ,

MOM
(v)
K′ (lf ) = MOMK′(P

B
(v)
1
lf , ..., PB

(v)

K′
lf )

and B
(v)
1 ∪ ... ∪ B

(v)
K′ is a partition of the test set Dv into K ′ blocks where K ′ ∈ [N/V ]

such that K ′ divides N/V .

We see that the adaptive choice of K and λ seems relevant in the case of uncorrupted
data since it chooses K̂ = 1, i.e. that it does not separate the data and thus that
it computes a traditional LASSO estimation. It also seems to fit well in the case of
corrupted data and we see that the best performances in this case are with λ = 0.822
and K = 17.
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Figure 4: Adaptative choice of K and λ with cross validation on corrupted data. Adaptatively
chosen λ (center) for MOM LASSO and LASSO estimators. Adaptatively chosen K for MOM
LASSO estimator (right).

We can observe on figure [3.2.2](left) that the MOM LASSO estimator performs much
better in terms of squared error than the LASSO estimator as soon as the data are
corrupted by outliers. We also notice that the adaptive K̂ selected by Cross Validation
increases with the number of outliers in the data set, which is consistent with the fact
that K must be at least twice as large as the number of outliers.

3.3 Outliers detection

We can improve again the stability and performance of the algorithm by simply shuffling
the K blocks at each step, like in the algotithm in figure 5.
In figure 6 we compare the convergence of the ADMM MOM LASSO algorithm with
fixed blocks versus random blocks. We can see that not only shuffling the blocks at each
step makes our algorithm more stable, but also greatly improves the estimation error.

We can even derive an outlier detection procedure from this. Indeed, provided that
the number of blocks is large enough, we expect that the outliers would not be in the
median block, given that outlier data tend to yield extreme values of the empirical mean.
So, what we can do by shuffling the blocks is to give a score to the data selected in the
median block. More precisely every data start with a score of 0, and at each step the
data selected in the median block are given one point. At the final step, we compare
the score of each data : outliers should have a much lower score than informative data.
Figure 7 shows an example of this procedure on synthetic data.
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Figure 5: The ADMM algorithm for the minimax MOM estimator with a random choice
of blocks at each steps.

Figure 6: Fixed blocks against random blocks.
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Figure 7: Outliers detection algorithm. The dataset has been corrupted by 4 outliers at
number 1, 32, 170 and 194. The score of the outliers is 0: they haven’t been selected
even once.

3.4 Theoretical properties

In this section we study the theorectical performance of the MOM estimator. The main
result of this section is given by theorem (3.4) which gives rates of convergence of the
estimator wich are optimal in the minimax sense for the regularization norm and the L2

P

norm. The minimax optimality will not be proven in this work but evidence can be found
in Lecué and Lerasle (2017).

3.4.1 Assumptions

We only need the following simple assumptions on informative data in order to prove
(3.4).

Assumption 1. There exists θr0 > 0 such that for all f ∈ F and all i ∈ I,√
Pi (f − f ∗)2 ⩽ θr0

√
P (f − f ∗)2.

Of course, Assumption 1 holds in the i.i.d. framework, with θr0 = 1 and I = [N ]. The
second assumption bounds the correlation between the ”noise” ζi = Yi − f ∗ (Xi) and the
shifted class F − f ∗.

Assumption 2. There exists θm > 0 such that for all i ∈ I and all f ∈ F ,

var (ζi (f − f ∗) (Xi)) ⩽ θ2m ∥f − f ∗∥2L2
P
.

Assumption 2 typically holds in the i.i.d. setup when the noise ζ = Y − f ∗(X)
has uniformly bounded L2-moments conditionally to X, which holds in the classical
framework when ζ is independent of X and ζ has a finite L2-moment bounded by θm.
In non-i.i.d. setups, assumption 2 also holds if for all i ∈ I, ∥ζ∥L4

Pi
⩽ θ2 < ∞− where
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ζ(x, y) = y − f ∗(x) for all x ∈ X and y ∈ R− and, for every f ∈ F , ∥f − f ∗∥L4
Pi

⩽

θ1 ∥f − f ∗∥L2
P
, because, in that case,√

varPi
(ζ (f − f ∗)) ⩽ ∥ζ (f − f ∗)∥L2

Pi

⩽ ∥ζ∥L4
Pi
∥f − f ∗∥L4

Pi

⩽ θ1θ2 ∥f − f ∗∥L2
P

and so Assumption 2 holds for θm = θ1θ2. Now, let us introduce a norm equivalence
assumption over F − f ∗ : we call it a L2/L1 assumption.

Assumption 3. There exists θ0 ⩾ 1 such that for all f ∈ F and all i ∈ I

∥f − f ∗∥L2
P
⩽ θ0 ∥f − f ∗∥L1

Pi

.

Note that ∥f − f ∗∥L1
Pi

⩽ ∥f − f ∗∥L2
Pi

for all f ∈ F and i ∈ I. Therefore, 1 and 3 are

together equivalent to assume that all the norms L2
P , L

2
Pi
, L1

Pi
, i ∈ I are equivalent over

F − f ∗.
Before stating the main theorem, we still need to introduce some definitions.

3.4.2 Rademacher complexities

We define the balls associated with the regularization norm ∥ · ∥ and the L2
P norm. For

all ρ ⩾ 0,
B (f ∗, ρ) = {f ∈ F : ∥f − f ∗∥ ⩽ ρ} = f ∗ + ρB

where B = {f ∈ span(F ), ∥f∥ ⩽ ρ} and for r ⩾ 0,

B2 (f
∗, r) =

{
f ∈ F : ∥f − f ∗∥L2

P
⩽ r
}

We now introduce the Rademacher complexities of the sets B (f ∗, ρ) ∩B2 (f
∗, r) :

Definition 3.3. Let (ϵi)i∈[N ] be independent Rademacher random variables (i.e. uni-

formly distributed in {−1, 1}), independent from (Xi, Yi)
N
i=1 . For all f ∈ F, r > 0 and

ρ ∈ (0,+∞], we denote the intersection of the ∥ · ∥ − ball of radius r and the L2
P -norm

of radius ρ centered at f by

Breg(f, ρ, r) = B(f, ρ) ∩B2(f, r) =
{
g ∈ F : ∥g − f∥L2

P
⩽ r, ∥g − f∥ ⩽ ρ

}
.

Let ζi = Yi − f ∗ (Xi) for all i ∈ I and for γQ, γM > 0 define

rQ (ρ, γQ) = inf

{
r > 0 : ∀J ⊂ I, |J | ⩾ N

2
,E sup

f∈Breg(f∗,ρ,r)

∣∣∣∣∣∑
i∈J

ϵi (f − f ∗) (Xi)

∣∣∣∣∣ ⩽ γQ|J |r

}
,

rM (ρ, γM) = inf

{
r > 0 : ∀J ⊂ I, |J | ⩾ N

2
,E sup

f∈Breg(f∗,ρ,r)

∣∣∣∣∣∑
i∈J

ϵiζi (f − f ∗) (Xi)

∣∣∣∣∣ ⩽ γM |J |r2
}
,

and let ρ → r (ρ, γQ, γM) be a continuous and non decreasing function such that for every
ρ > 0,

r(ρ) = r (ρ, γQ, γM) ⩾ max {rQ (ρ, γQ) , rM (ρ, γM)}
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It follows from Lemma 2.3 in Lecué and Mendelson (2016) that rM and rQ are con-
tinuous and non decreasing functions. Note that rM(·), rQ(·) depend on f ∗. According
to Lecué and Mendelson (2016), if one can choose r(ρ) equal to the maximum of rM(ρ)
and rQ(ρ) then r(ρ) is the minimax rate of convergence over B (f ∗, ρ). Note also that
rQ and rM are well defined when |I| ⩾ N/2, which implies that at least half data are
informative.

Theorem 3.4. Grant Assumptions 1, 2 and 3 and let rQ, rM denote the functions
introduced in Definition 5. Assume that N ⩾ 384 (θ0θr0)

2 and |O| ⩽ N/ (768θ20). Let
ρ∗ be solution to the sparsity equation from Definition 6. Let K∗ denote the smallest
integer such that

K∗ ⩾
Nϵ2

384θ2m
r2 (ρ∗) ,

where ϵ = 1/ (833θ20) and r2(·) is defined in Definition 5 for γQ = (384θ0)
−1 and

γM = ϵ/192. For any K ⩾ K∗, define the radius ρK and the regularization parameter
as

r2 (ρK) =
384θ2m
ϵ2

K

N
and λ =

16ϵr2 (ρK)

ρK

Assume that for every i ∈ I,K ∈ [max (K∗, |O|) , N ] and f ∈ F such that ∥f − f ∗∥ ⩽
ρ for ρ ∈ [ρK , 2ρK ], one has

|Piζ (f − f ∗)− Pζ (f − f ∗)| ⩽ ϵmax

(
r2M (ρ, γM) ,

384θ2m
ϵ2

K

N
, ∥f − f ∗∥2L2

p

)
. (5)

Then, for all K ∈
[
max (K∗, 8|O|) , N/

(
96 (θ0θr0)

2)], with probability larger than

1− 4 exp(−7K/9216), the estimator f̂K,λ defined in Section 2.3 satisfies∥∥∥f̂K,λ − f ∗
∥∥∥ ⩽ 2ρK ,

∥∥∥f̂K,λ − f ∗
∥∥∥
L2
P

⩽ r (2ρK)

R
(
f̂K,λ

)
⩽ R (f ∗) + (1 + 52ϵ)r2 (2ρK) .

3.4.3 Quadratic term and multiplier decomposition

In order to control the risk of our estimator, we bound from above TK,λ(f, f
∗) for all

functions f far from f ∗. For this purpose we recall the quadratic/multiplier decomposition
of the difference of the quadratic losses.

lf (x, y)− lg(x, y) = (y − f(x))2 − (y − g(x))2

= f 2(x) + g2(x)− 2f(x)g(x)− 2(yf(x)− yg(x)) + 2f(x)g(x)− 2g2(x)

= (f(x)− g(x))2 + 2(y − g(x))(g(x)− f(x))

So we get

TK,λ(f, f
∗) = MOMK [2ζ(f − f ∗)− (f − f ∗)2] + λ(∥f ∗∥ − ∥f∥)

where 2ζ(f − f ∗) is the multiplier term and (f − f ∗)2 is the quadratic term.
The following two flemmas control the quantiles of the means of those two terms.
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Lemma 3.5 (Granted). Grant Assumptions 1 and 3. Fix η ∈ (0, 1), ρ ∈ (0,+∞]
and let α, γ, γQ, x be positive numbers such that γ (1− α− x− 16γQθ0) ⩾ 1 − η.
Assume that K ∈

[
|O|/(1− γ), Nα/ (2θ0θr0)

2]. Then there exists an event ΩQ(K)
such that P (ΩQ(K)) ⩾ 1− exp (−Kγx2/2) and, on ΩQ(K) : for all f ∈ F such that
∥f − f ∗∥ ⩽ ρ, if ∥f − f ∗∥L2

P
⩾ rQ (ρ, γQ) then∣∣∣{k ∈ [K] : PBk

(f − f ∗)2 ⩾ (4θ0)
−2 ∥f − f ∗∥2L2

P

}∣∣∣ ⩾ (1− η)K.

In particular, Qη,K

(
(f − f ∗)2

)
⩾ (4θ0)

−2 ∥f − f ∗∥2L2
P
.

Lemma 3.6 (Granted). Grant Assumption 2. Fix η ∈ (0, 1), ρ ∈ (0,+∞], and
let α, γM , γ, x and ϵ be positive absolute constants such that γ (1− α− x− 8γM/ϵ) ⩾
1−η. Let K ∈ [|O|/(1−γ), N ]. There exists an event ΩM(K) such that P (ΩM(K)) ⩾
1 − exp (−γKx2/2) and on the event ΩM(K) : if f ∈ F is such that ∥f − f ∗∥ ⩽ ρ
then∣∣∣{k ∈ K :

∣∣2 (PBk
− P̄Bk

)
(ζ (f − f ∗))

∣∣ ⩽ ϵmax
(
CK , r

2
M , ∥f − f ∗∥2L2

P

)}∣∣∣ ⩾ (1− η)K,

with CK = 16θ2m
ϵ2α

K
N
, P̄Bk

(ζ (f − f ∗)) := |Bk|−1∑
i∈Bk

E (ζi (f(Xi)− f ∗(Xi)))

3.4.4 The sparsity equation:

For ∥f − f ∗∥L2
P
small, the quadratic term (f − f ∗)2 will not help to bound from above

TK,λ(f, f
∗) and we then only rely on the regularization term. For this we bound from

below (∥f ∗∥ − ∥f∥) using the saprsity equation. We need in this purpose to introduce
the subdifferiantials of the L2 norm :

(∂∥ · ∥)f = {z∗ ∈ E∗ : ∥f + h∥ ⩾ ∥f∥+ z∗(h) for every h ∈ E}

where E∗ is the dual space of E with norm ∥.∥∗.

Definition 3.7. Let us introduce, for all ρ > 0,

∆(ρ) = inf
f∈Hρ

sup
z∗∈Γf∗ (ρ)

z∗ (f − f ∗)

with Hρ, the set of function close to f ∗ in the L2
P sens and with distance ρ in the L2

sense, define as

Hρ = {f ∈ F : ∥f − f ∗∥ = ρ and ∥f − f ∗∥L2
P
⩽ r(ρ)

}
and Γf∗(ρ) as

Γf∗(ρ) =
⋃

f∈F :∥f−f∗∥⩽ρ/20

(∂∥ · ∥)f .

A radius ρ > 0 is said to satisfy the sparsity equation when δ(ρ) ⩾ 4ρ/5.
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The sparsity equation quantifies the largeness of ∥f∥ − ∥f ∗∗∥ for any f ∗∗ ∈ {f ∈ F :
∥f ∗ − f∥ ⩽ ρ/20} and f ∈ Hρ such that ∥f∥ − ∥f ∗∥ ⩾ ∥f∥ − ∥f ∗∥ − ∥f ∗ − f ∗∗∥ is large
as well. Then we can bound ∥g∥ − ∥f ∗∥ for g ∈ F with the lemma :

Lemma 3.8. Let ρ ⩾ 0,Γf∗(ρ) = ∪f∈F :∥f−f∗∥⩽(ρ/20)(∂∥ · ∥)f . For all g ∈ F ,

∥g∥ − ∥f ∗∥ ⩾ sup
z∗∈Γf∗ (ρ)

z∗ (g − f ∗)− ρ

10
.

Proof. For z∗ ∈ (∂∥.∥)f∗∗ we have

∥g∥ − ∥f ∗∥ ⩾ ∥g∥ − ∥f ∗∗∥ − ∥f ∗∗ − f ∗∥

⩾ z∗(g − f ∗∗)− ρ

20
= z∗(g − f ∗)− z∗(f ∗∗ − f ∗)− ρ

20

⩾ z∗(g − f ∗)− ρ

20
because z∗(f∗∗ − f∗) ⩽ ∥f∗∗ − f∗∥

3.4.5 Bounding the empirical criterion

In order to up bound the term CK,λ(f
∗) we consider a partition of the space F according

to the distance between g and f ∗ in term of L2 and LP
2 norms. We define for κ ≥ 1 :

F
(κ)
1 =

{
g ∈ F : ∥g − f ∗∥ ⩽ κρK and ∥g − f ∗∥L2

P
⩽ r (κρK)

}
,

F
(κ)
2 =

{
g ∈ F : ∥g − f ∗∥ ⩽ κρK and ∥g − f ∗∥L2

P
> r (κρK)

}
,

F
(κ)
3 = {g ∈ F : ∥g − f ∗∥ > κρK} .

The following flemma gives upper bounds for CK,λ(f
∗) for each of these partitions.

Lemma 3.9. On the event Ω(K), it holds for all κ ∈ {1, 2},

sup
g∈F (κ)

1

TK,λ (g, f
∗) ⩽ (2 + c′κ) ϵr2 (κρK) (6)

sup
g∈F (κ)

2

TK,λ (g, f
∗) ⩽

(
(2 + c′κ) ϵ− 1

16θ20

)
r2 (κρK) (7)

sup
g∈F (κ)

3

TK,λ (g, f
∗) ⩽ κmax

(
2ϵ− 1

16θ20
+

11c′ϵ

10
, 2ϵ− 7c′ϵ

10

)
r2 (ρK) (8)

when c ⩾ 32 and 10ϵ/4 ⩽ c′ϵ ⩽
(
(4θ0)

−2 − 2ϵ
)
.

Proof. First by Lemma (3.6) we get that, there exist (3/4)K block Bk with k ∈ K , for
which, ∣∣(PBk

− P̄Bk

)
[2ζ (f − f ∗)]

∣∣ ⩽ ϵmax

(
r2M (ρ, γM) ,

384θ2m
ϵ2

K

N
, ∥f − f ∗∥2L2

p

)
17



and by assumption (5) from Theorem (3.4), we get for those blocks that for all f ∈ F
such that ∥f − f ∗∥ ≤ ρ,

PBk
[2ζ (f − f ∗)] |⩽ P [2ζ (f − f ∗)] + 2ϵmax

(
r2M (ρ, γM) ,

384θ2m
ϵ2

K

N
, ∥f − f ∗∥2L2

p

)
(9)

As f ∗ is a minimizer of P (lf − lg) over F which is convex, it follows from the nearest
point theorem 1 that P [2ζ (f − f ∗)] ≤ 0 for all f ∈ F . So we get that for all f ∈ F such
that ∥f − f ∗∥ ≤ ρ,

Q3/4,K (2ζ (f − f ∗)) ⩽ 2ϵmax

(
r2M (ρ, γM) ,

384θ2m
ϵ2

K

N
, ∥−f ∗∥2L2

p

)
(10)

Using same arguments as in equation (9) we get for all f ∈ F such that ∥f − f ∗∥ ≤ ρ
that,

P [−2ζ (f − f ∗)] ⩽ PBk
[−2ζ (f − f ∗)] + 2ϵmax

(
r2M (ρ, γM) ,

384θ2m
ϵ2

K

N
, ∥f − f ∗∥2L2

p

)
Finally by using that ∥f − f ∗∥ ≤ ρ we bound from above PBk

[−2ζ (f − f ∗)] by
Q1/4,K

[
(f − f ∗)2 − 2ζ (f − f ∗)

]
+ λ (∥f∥ − ∥f ∗∥) + λρ and we have,

P [−2ζ (f − f ∗)] ⩽ TK,λ (f
∗, f) + 2ϵmax

(
r2M (ρ, γM) ,

384θ2m
ϵ2

K

N
, ∥f − f ∗∥2L2

p

)
+ λρ (11)

We finally decompose the proof for each partition of F.

1. Bound over F
(κ)
1 . We have by definition of TK,λ

TK,λ (g, f
∗) = MOMK

(
2ζ (g − f ∗)− (g − f ∗)2

)
− λ (∥g∥ − ∥f ∗∥)

⩽ Q3/4,K (2ζ (g − f ∗)) + λ ∥f ∗ − g∥

Using equation (10), we immediatly get, for all g ∈ F
(κ)
1 ,

TK,λ (g, f
∗) ⩽ 2ϵmax

(
r2M (ρ, γM) ,

384θ2m
ϵ2

K

N
, ∥g − f ∗∥2L2

p

)
+ λ ∥f ∗ − g∥

⩽ 2ϵmax

(
r2M (ρ, γM) ,

384θ2m
ϵ2

K

N
, ∥g − f ∗∥2L2

p

)
+ λκρK by definition of F

(κ)
1

Choosing the radius ρK and the regularization parameter as in Theorem (3.4) lead
immediately to (6).

1

Let S be a non-empty closed convex set in Rn and let y /∈ S, then ∃ a point x̄ ∈ S with
minimum distance from y, i.e., ∥y − x̄∥ ≤ ∥y − x∥∀x ∈ S.
Furthermore, x̄ is a minimizing point if and only if (y − x̂)T (x− x̂) ≤ 0

18



2. Bound over F
(κ)
2 . Using the fact that Q1/2(x− y) ⩽ Q3/4(x)−Q1/4(y), we have

TK,λ (g, f
∗) ⩽ Q3/4,K (2ζ (g − f ∗))−Q1/4,K

(
(g − f ∗)2

)
+ λ ∥f ∗ − g∥

⩽ Q3/4,K (2ζ (g − f ∗))−Q1/4,K

(
(g − f ∗)2

)
+ λκρK

We then bound Q1/4,K

(
(g − f ∗)2

)
using lemma (3.5) and Q3/4,K (2ζ (g − f ∗)) using

(10) and get

TK,λ (g, f
∗) ⩽ 2ϵmax

(
r2M (ρ, γM) ,

384θ2m
ϵ2

K

N
, ∥g − f ∗∥2L2

p

)
− (4θ0)

−2 ∥g − f ∗∥2L2
P
+ λκρK

⩽

(
2ϵ− 1

(4θ0)
2

)
∥g − f ∗∥2L2

P
+ λκρK using that 2ϵ ≤ (4θ0)

−2

⩽

(
2ϵ− 1

16θ20

)
r2 (κρK) + λκρK

Choosing the radius ρK and the regularization parameter as in Theorem (3.4) and
using that λκρK = c′κϵr2(ρK) lead immediately to (7).

3. Bound over F
(κ)
3 is shown using simple homogeneity argument.

Lemma 3.10. Let ρ ⩾ 0. Let g ∈ F be such that ∥g − f ∗∥ ⩾ ρ. Define f =
f ∗ + ρ (g − f ∗) / ∥g − f ∗∥. Then f ∈ F, ∥f − f ∗∥ = ρ and,

MOMK ( (g − f ∗)2 − 2ζ (g − f ∗) + λ sup
z∗∈Γf∗ (ρ)

z∗ (g − f ∗) ⩾

∥g − f ∗∥L2
P

ρ

(
MOMK

(
(f − f ∗)2 − 2ζ (f − f ∗)

)
+ λ sup

z∗∈Γf∗ (ρ)

z∗ (f − f ∗)

)
.

Proof. The two first propositions are respectively a direct consequence of the convexity
of F and the definition of f .
For the last one, let Υ = ∥g − f ∗∥ /ρ and note that Υ ⩾ 1 and g − f ∗ = Υ(f − f ∗), so
we have

MOMK

(
(g − f ∗)2 − 2ζ (g − f ∗)

)
+ λ sup

z∗∈Γf∗ (ρ)

z∗ (g − f ∗)

= MOMK

(
Υ2 (f − f ∗)2 − 2Υζ (f − f ∗)

)
+ λΥ sup

z∗∈Γf∗ (ρ)

z∗ (f − f ∗)

⩾ Υ

(
MOMK

(
(f − f ∗)2 − 2ζ (f − f ∗)

)
+ λ sup

z∗∈Γf∗(ρ)

z∗ (f − f ∗)

)
.
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Now, let us bound sup
g∈F (κ)

3
TK,λ (g, f

∗) . Let g ∈ F
(κ)
3 . Applying lemma 3.8 and lemma

3.10 to ρ = ρK : there exists f ∈ F such that ∥f − f ∗∥ = ρK and

TK,λ (g, f
∗) = MOMK

(
2ζ (g − f ∗)− (g − f ∗)2

)
− λ (∥g∥ − ∥f ∗∥)

⩽ MOMK

(
2ζ (g − f ∗)− (g − f ∗)2

)
− λ sup

z∗∈Γf∗ (ρK)

z∗ (g − f ∗) + λ
κρK
10

⩽
∥g − f ∗∥

ρK

(
MOMK

(
2ζ (f − f ∗)− (f − f ∗)2

)
− λ sup

z∗∈Γf∗ (ρK)

z∗ (f − f ∗)

)
+ λ

κρK
10

(12)
First assume that ∥f − f ∗∥L2

P
⩽ r (ρK) . In that case, ∥f − f ∗∥ = ρK and ∥f − f ∗∥L2

P
⩽

r (ρK) therefore, f ∈ HρK .Moreover, by definition ofK∗ and sinceK ⩾ K∗, we have ρK ⩾
ρ∗ which implies that ρK satisfies the sparsity equation. Therefore, supz∗∈Γf∗ (ρK) z

∗ (f − f ∗) ⩾

∆(ρK) ⩾ 4ρK/5. Now, it follows from fact that λ = c′ϵr2(ρK)
ρK

that

−λ sup
z∗∈Γf∗ (ρK)

z∗ (f − f ∗) ⩽ −4c′ϵr2 (ρK)

5
.

Moreover, since the quadratic process is non-negative, by 10 applied to ρ = ρK ,

MOMK

(
2ζ (f − f ∗)− (f − f ∗)2

)
⩽ Q3/4,K [2ζ (f − f ∗)]

⩽ 2ϵmax

(
r2M (ρK , γM) ,

384θ2m
ϵ2

K

N
, ∥f − f ∗∥2L2

p

)
⩽ 2ϵr2 (ρK)

Finally, noting that 2ϵ − 4c′ϵ/5 ⩽ 0 when c′ ⩾ 10/4, binding all the pieces together
in 12 yields

TK,λ (g, f
∗) ⩽ κϵ (2− 4c′/5) r2 (ρK) + λ

κρK
10

= κϵ

(
2− 7c′

10

)
r2 (ρK) .

Second, assume that ∥f − f ∗∥L2
P
⩾ r (ρK) . Since ∥f − f ∗∥ = ρK , it follows from 3.5 and

3.6 for ρ = ρK that

MOMK

(
2ζ (f − f ∗)− (f − f ∗)2

)
⩽ Q3/4,K (2ζ (f − f ∗))−Q1/4,K

(
(f ∗ − f)2

)
⩽ 2ϵmax

(
r2M (ρK , γM) ,

384θ2m
ϵ2

K

N
, ∥f − f ∗∥2L2

p

)
−

∥f − f ∗∥2L2
P

(4θ0)
2

⩽

(
2ϵ− 1

16θ20

)
∥f − f ∗∥2L2

P
⩽

(
2ϵ− 1

16θ20

)
r2 (ρK)

where we used that 2ϵ ⩽ (16θ0)
−2 when c ⩾ 32 in the last inequality. Plugging the last

result in 12 we get

TK,λ (g, f
∗) ⩽

∥g − f ∗∥
ρK

((
2ϵ− 1

16θ20

)
r2 (ρK) + λρK

)
+ λ

κρK
10

⩽
∥g − f ∗∥

ρK

(
(2 + c′) ϵ− 1

16θ20

)
r2 (ρK) +

c′κϵ

10
r2 (ρK) ⩽ κ

((
2 +

11c′

10

)
ϵ− 1

16θ20

)
r2 (ρK)

when 16 (2 + c′) ϵ ⩽ θ−2
0 .
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3.4.6 Statistical performance

Lemma 3.11. Let f̂ ∈ F be such that, on Ω(K), CK,λ(f̂) ⩽ (2 + c′) ϵr2 (ρK). Then,

on Ω(K), f̂ satisfies
∥∥∥f̂ − f ∗

∥∥∥ ⩽ 2ρK ,
∥∥∥f̂ − f ∗

∥∥∥
L2
P

⩽ r (2ρK) and R(f̂) ⩽

R (f ∗) + (1 + (4 + 3c′) ϵ) r2 (2ρK), when c′ = 16 and c > 832.

Proof. Recall that for any x ∈ RK , Q1/2(x) ⩾ −Q1/2(−x). Therefore,

CK,λ(f̂) = sup
g∈F

TK,λ(g, f̂) ⩾ TK,λ

(
f ∗, f̂

)
⩾ −TK,λ

(
f̂ , f ∗

)
.

Thus, on Ω(K), f̂ ∈ {g ∈ F : TK,λ (g, f
∗) ⩾ − (2 + c′) ϵr2 (ρK)}. When c′ = 16 and c >

832,

− (2 + c′) ϵ > 2 (1 + c′) ϵ− 1

16θ20
and − (2 + c′) ϵ > 2max

(
2ϵ− 1

16θ20
+

11c′ϵ

10
, 2ϵ− 7c′ϵ

10

)
therefore, f̂ ∈ F

(2)
1 on Ω(K). This yields the results for both the regularization and the

L2
P -norm. Finally, let us turn to the control on the excess risk. It follows from 11 for

ρ = κρK that

R(f̂)−R (f ∗) =
∥∥∥f̂ − f ∗

∥∥∥2
L2
P

+ P
[
−2ζ

(
f̂ − f ∗

)]
⩽ r2 (2ρK) + TK,λ

(
f ∗, f̂

)
+ 2ϵmax

(
r2M (2ρK , γM) ,

384θ2m
ϵ2

K

N
,
∥∥∥f̂ − f ∗

∥∥∥2
L2
p

)
+ 2λρK

⩽ r2 (2ρK) + CK,λ(f̂) + 2ϵr2 (2ρK) + 2c′ϵr2 (ρK) = (1 + (4 + 3c′) ϵ) r2 (2ρK) .

We end the proof of theorem (3.4) using that, by definition of f̂K,λ,

CK,λ

(
f̂K,λ

)
≤ CK,λ (f

∗) = sup
g∈F

TK,λ (g, f
∗) ≤ max

i∈[3]
sup

g∈F (1)
i

TK,λ (g, f
∗)

where
{
F

(1)
1 , F

(1)
2 , F

(1)
3

}
is the decomposition of F . It follows from 8 (for κ = 1 ) tha on

the event Ω(K),

CK,λ

(
f̂K,λ

)
⩽ (2 + c′) ϵr2 (ρK) .

Therefore, for c′ = 16 and c = 833 the conclusion of the proof of Theorem 1 follows from
3.11.
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4 Opening

In their article, Lecué and Lerasle (2017) proposed a new estimator for robust machine
learning based on median-of-mean. As we shown in section (3.4), this estimator show
very interesting theoretical properties. In fact it is shown that it optimal in the minimax
sens in both l2 and L2

P norm. In addition, those optimal rates of convergence are achieved
under minimal assuptions on the dataset, knwoing the informative data are independant
(not necessarly i.i.d) and the outliers are not assumed independant nor independant to the
informative data nor identically distributed, in fact, they can even be adversarial. Also
the authors developp a new notion that quantify the robustness of their estimator which is
non-asymptotic and takes into acount the statistical performances of the estimators and
show that their estimator have a breakdown number of order number of iterations×rate
of convergence.

In addition, the estimator developped in the article easily computable in practice
and is appliable to, basically, any problem which require to estimate the empirical risk
minimizer (ERM). In fact, we focused on the MOM version of the LASSO estimator in
this work but it can also be used for classical ERM estimation without regulraization or
with other ones, like SLOPE regularization.

Also, the estimator can be used for outliers detection which is an active field of research
in the data science and machine learning community. This come from the randomization
of the blocks at each step of the descent algorithm, which, in addition of improving a lot
the performance of the estimator, gives a measure of singularity of the data which can
be used as an outlier dection tool.
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5 Appendix : Adaptative choice of K with Lepski’s

method

The choice of K in the MOM estimator is of primary importance as all rates in Theorem
(3.4) depends on it. This construction, inspired from the Lepski’s method provides an
adaptative choice of this parameter (see Goldenshluger and Lepski (2011) for more in-
formation about this method). For λ > 0, f ∈ F and a constant cad > 0, the adaptative
choice of K is given, for all J ∈ [max(K∗, 8|O|), N/(96(θ0θr0)

2)]

K̂cad = inf

{
K ∈

[
max (K∗, 8|O|) , N/

(
96 (θ0θr0)

2)] : ∩N/(96(θ0θr0)2)
J=K R̂J,cad ̸= ∅

}
and choose f̂cad ∈ ∩N/(96(θ0θr0)2)

J=K̂cad

R̂J,cad .

with

R̂J,cad =

{
f ∈ F : CJ,λ(f) ⩽

cad
θ20

r2 (ρJ)

}
For this choice of K we get the following rates

Theorem 5.1. Grant the assumptions of Theorem 1 and assume moreover that and
|O| ⩽ N/ (768θ20θ

2
r0). For any K ∈

[
max (K∗, 8|O|) , N/

(
96 (θ0θr0)

2)], with probabil-
ity larger than

1− 4 exp(−K/2304) = 1− 4 exp
(
−ϵ2Nr2 (ρK) /884736

)
one has ∥∥∥f̂cad − f ∗

∥∥∥ ⩽ 2ρK ,
∥∥∥f̂cad − f ∗

∥∥∥
L2
P

⩽ r (2ρK)

R
(
f̂cad

)
⩽ R (f ∗) + (1 + 52ϵ)r2 (2ρK)

where cad = 18/833 and ϵ = (833θ20)
−1
. In particular, for K = K∗, we have

r (2ρK∗) = max
(
r (2ρ∗) ,

√
|O|/N

)
Therefore, if r (2ρ∗) ⩽ c1r (ρ

∗) holds for some

absolute constant c1, then the breakdown number of f̂cad is larger than Nr (ρ∗)2.
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