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1 Introduction
Climate models or more generally Earth System Models (ESMs) have become cen-
tral to the study of climate evolution, both for the assessment of past climates
and for projections of future climate. These models were among the first appli-
cations of numerical computation in the 1950s (see Platzman [1]) when the use of
the "super-computers" of the time enabled the field of weather and climate predic-
tion to experience a real boom. The structure of these models has become more
complex over the last few decades, first including ocean circulation (see Manabe
and Bryan [2]) in 1969, then the contribution of the radiation balance modified by
human forcing linked to CO2 emissions (see Manabe and Wetherald [3]) in 1975,
leading finally to the creation of the Intergovernmental Panel for Climate Change
(IPCC) in 1988, whose mission is "[...] to assess, in a systematic, clear and objective
manner, the scientific, technical and socio-economic information needed to improve
our understanding of the risks associated with human-induced global warming [...]".
The various components of the ESMs are generally modelled by systems of partial
differential equations (PDEs) describing various processes such as fluid mechanics
(described by the Navier-Stockes equations) or thermodynamics for modelling the
ocean and atmosphere or biological and chemical processes describing marine and
terrestrial ecosystems. These processes encompass spatial and temporal scales of
different order, ranging from the collision between cloud particles of the order of a
micron in size to the deep circulation of ocean, of the order of 1000 to 10000 km.
The limited computing power of today’s supercomputers does not allow the cre-
ation of models representing the entire Earth system at a sufficiently small scale to
model small-scale processes such as cloud formation or the formation and circulation
of plankton. Furthermore, human contributions to climate change are now widely
accepted and their uncertain evolution complicates the modellers’ projections.

At the same time, we have observed a great development of statistical tools al-
lowing the analysis of increasingly complex and high dimmensional data. Although
these tools have quickly become standard in some fields of scientific research (health
sciences, economics, etc.), the climate sciences have for a long time remained rel-
atively closed to them. They were mainly relying on statitical methods of the be-
ginning of the 20th century such as Principal Components Analysis (also known as
Empirical Orthogonal Functions in climate sciences), correlation analysis and lin-
ear regression. Recently, the abundance of climate data from model simulations,
Earth-orbiting satellites, and in situ observations coupled with the recent advances
in developping field such as Machine Learning have allowed many advances in our
understanding of the earth system, putting statistical analysis back at the center of
a lot of research in this field.

Of particular interest in this work, the field of causal analysis, at the crossroads
of statistics and computer science, is struggling to make its entry into the climate
sciences for several understandable reasons. First the chaotic and non-stationary
nature of the climate makes invalidates a large number of assumptions that are
often made in causal inference or discovery (e.g. stationarity, i.i.d distributed data,
etc...). Second, the concept of intervention, central to Pearl’s causal framework (one
of the widely considered framework in causality), seems at odds with the physical
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description of the climate system since it requires that it be possible to change one
of the variables without affecting the rest of the system which seems to contradict
the laws of conservation of energy.

That being said, it seems that causal analysis has the potential to give us a
better understanding of the climate system and its interaction with ecosystems and
human activity.This framework would seem, for example, to be particularly suitable
for analyzing the impact of policy aiming to tackle climate change.

Thus, the nature of the studied system brings many theoretical and practical
challenges. Here we focus in a specific problem at the junction of causal discovery,
causal representation learning and causal inference which is the discovery of unob-
served confounders from high dimensional proxy variables for unbiased estimation
of causal effect.

As this work is still in its infancy, we report here the main challenges of this
problem, study the main methods used in the literature in similar contexts and
propose a research path to address their main shortcomings.

2 Scope
The first part of this report aims to give the reader a general understanding of
what causality is and what it can contribute to our understanding of climate. In
subsection 3.1 we briefly describe what are the main ideas behind causality and
what it brings in addition to classical statistics. We then formalize it with a brief
description of the main mathematical settings and assumptions in subsection 3.2.
As this work is at the crossroad of causal discovery, causal inference and causal
representation learning we will try to disambiguate these terms in ?? and finally
give some examples of applications in geoscience in 3.3.

The problem of variable adjustement for causal effect estimation has been widely
studied in a lot of different fields, each considering differents settings. Specifically,
this is of primer importance in health science and economics to assess the effect
of a treatment on an outcome (e.g. the effect of drug medication on healing or
the effect of a public policy of the average level of education of a population).
We first give a clear description of what we expect from variable adjustement for
causal effect estimation in climate sciences in subsection 4.1 and then describe the
different methodologies that, to the best of our knowledge, are the most used to
tackle this problem in subsection 4.3. This leads to domain specific difficulties that
we will describe in subsection ??. We describe in section 5 our approach adress this
problematic and the different difficulties that it brings. We present our main results
applied to real application (see 6.1) and finally we will discuss our results and give
futher path of research in section 7.

3 Context
The discovery of the causes at the source of the various phenomena observed,
whether physical, chemical, biological, psychological or even social, has been central
to scientific research for several centuries. In spite of this, causal language remained
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neglected (or even prohibited) in mathematics throughout the first half of the 20th
century with the mathematisation of Statistics and is still largely so today. We learn
in school that "Correlation does not imply causation" and rightly so, but we do not
learn to distinguish a spurious correlation due to a common cause from a direct
causal link. Thus, it should be noted that geneticist Sewall Wright – geneticist from
the early 20th century – developp, concomitantly with modern statists, a framework
known as Path Analysis which is still widely used in a lot of scientific field such as
biology, sociology or econometrics. This can certainly be considered as one of the
first formalization of causality.

The lack of formalisation of the concept of causality makes it difficult to make
causal statements such as event A causes event B. In the course of the 20th century,
we have seen situations that seem aberrant today, such as the industry questioning
tobacco consumption as a causal factor in lung cancer on the pretext of a simple
correlation that could be due to external factors. The theoretical framework of
causality being unclear, it was necessary to wait for

But in recent decades we assisted to what Judea Pearl calls the Causal Revolution
(see Pearl and Mackenzie [4]) with a multiplication of theoretical developpement and
formalization of what we understand by causation. Many frameworks exists but one
of the most widely used in many domains is the graphical causal model framework
(see Pearl [5]) where a directed graph express the causal relation between different
variables. In the following section we try to give some insights on the usefullness of
the causal framework.

3.1 Causality

Although time is the most obvious clue when one seeks to reason causally (causes
should precedes consequences), the end of the twentieth century, with the work of
Pearl, Rebane or Spirtes, saw the emergence of a formalization of the concept of
causality that does not require considering time. It seems obvious that time alone
cannot distinguish real causal link from spurious associations caused by some exter-
nal factors. One could for example look at his barometer falling a few minutes before
it starts to rain and yet, common sense will not make him think that this caused the
rain. Let us, as an intoduction example, consider observations of precipitation in
different regions of Europe during summer period, say in Denmark and the Mediter-
ranean to rely on the work of Kretschmer et al. [6]. One could analyse the correlation
between spatially averaged observation in this those regions and find a significant
association (r = −0.24). A climatologist will quickly conclude that this association
is spurious and that it is actually caused by a third phenomenon, namely the North
Atlantic Oscillation, which in its positive phase causes particularly rainy periods in
the Mediterranean and dry anomalies in northern Europe during the summer. He is
actually having a causal reasoning about the phenomena he observes (which is often
the case in experimental science). Reasoning that could be translated, for example,
by the graph [5].

Indeed, an apparent correlation between two phenomena A and B does not
necessarily imply a causal link between them, but if this is not the case, it generally
implies that a third phenomenon C is a common cause of A and B (see figure
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Figure 1: Causal graphs summarizing the Reinchenbach’s common cause principle.
If X and Y are dependent one from an other, then we are in one of this three
scenario. (Left) Z is a common cause of X and Y . (Middle) X causes Y . (Right)
Y causes X. From Peters et al. [7]

[1](Left)). This is entailed in the famous common cause principle of Reichenbach
which can be formulated as follow

Principle 3.1 1 (Reichenbach’s common cause principle) If two random variables
X and Y are statistically dependent (X⊥⊥ Y ), then there exists a third variable Z
that causally influences both. (As a special case, Z may coincide with either X or
Y .) Furthermore, this variable Z screens X and Y from each other in the sense
that given Z, they become independent, X⊥⊥ Y |Z.

It should be noted that a few exception applies to this principle, Peters et al. [7]
raise three of them

1. The random variables we observe are conditioned on others

2. The random variables only appear to be dependent. For example, they may
be the result of a search procedure over a large number of pairs of random
variables that was run without a multiple testing correction.

3. Similarly, both random variables may inherit a time dependence and follow a
simple physical law, such as exponential growth. The variables then look as
if they depend on each other, but because the i.i.d. assumption is violated,
there is no justification of applying a standard independence test.

Another central notion in the causal analysis of phenomena is that of independent
mechanisms. Let’s say consider we are given a sample of city observations with
their average annual temperature and altitude from which we can estimate a joint
distribution p(a, t) of the altitude A and the temperature T . Here the common
sense tells us that the altitude should cause the temperature (A→ T ) and not the
opposit. This idea seems to come from the fact that by changing the altitude of the
city (say by make it fly on a flying platform) then the temperature of the city would
drop. On the other hand, if the average temperature of the city would increase (say
due to global warming) this would not affect the altitude of the city. This is actually
based on the concept of intervention: What would happen if I intervened on this
variable A? Would it affect this variable B?

1From Peters et al. [7]
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One could wonder if this could be expressed in a probabilistic manner. For this,
let’s consider the two following factorization of the joint distribution

p(a, t) = p(a|t)p(t)
= p(t|a)p(a)

We could argue that the second factorization seems more relevant as it is possible to
imagine a meteorological mechanism p(t|a) describing how temperature is affected by
altitude (threw pressure levels, winds and other meteorological phenomena) which
is independant of the distribution of the altitude p(a). In contrast, it is way more
complicated to think about a mechanism p(a|t) describing how altitude is related to
temperature independently of the distribution of the temeprature p(t). One could
reformulate it in the following way : if A → T then the distribution p(a) and the
mechanism p(t|a), describing how T is affected by A, should be independent. This
is entailed in the Independent Mechanism Principle.

Principle 3.2 2 (Independent mechanisms) The causal generative process of a sys-
tem’s variables is composed of autonomous modules that do not inform or influence
each other. In the probabilistic case, this means that the conditional distribution of
each variable given its causes (i.e., its mechanism) does not inform or influence the
other conditional distributions. In case we have only two variables, this reduces to
an independence between the cause distribution and the mechanism producing the
effect distribution.

Causal analysis is therefore a tool that makes it possible, with the help of hy-
potheses concerning the various mechanisms studied, to answer questions that statis-
tics alone cannot address. We formalise the main hypotheses that allow us to reason
in a causal manner in the following section.

3.2 Formalization of causality

3.2.1 Structural Causal Models and interventions

As mentioned earlier, causal analysis is based on probabilistic modelling but adds
additional information about the relationship between the different variables which
is usually represented by a directed graph where the arrows represent causal asso-
ciations. In this work we will mainly consider Structural Causal Models (SCMs),
defined as follow

Definition 3.1 3(Structural causal models)
A structural causal model (SCM) C := (S, PN) consists of a collection S of d

(structural) assignments

Xi := fj(PAj, Nj), j = 1, ..., d (1)

2From Peters et al. [7]
3From Peters et al. [7]
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Figure 2: Example of an SCM (left) with corresponding graph (right). From Peters
et al. [7]

where PAj ⊂ X1, ..., Xd Xj are called parents of Xj ; and a joint distribution PN =
PN1,...,Nd

over the noise variables, which we require to be jointly independent; that is,
PN is a product distribution. The graph G of an SCM is obtained by creating one
vertex for each Xj and drawing directed edges from each parent in PAj to Xj , that
is, from each variable Xk occurring on the right-hand side of equation (1) to Xj (see
figure [2]). We henceforth assume this graph to be acyclic. We sometimes call the
elements of PAj not only parents but also direct causes of Xj , and we call Xj a
direct effect of each of its direct causes. SCMs are also called (nonlinear) Structural
Equation Models (SEMs).

One of the main advantages of SCMs over classical probabilistic models is that
they entail intervention distributions in addition of the observational distribution.

Proposition 3.1 (Entailed distributions)
An SCM C defines a unique distribution over the variables X = (X1, ..., Xd) such

that Xj = fj(PAj, Nj), in distribution, for j = 1, ..., d. We refer to it as the entailed
distribution P C

X and sometimes write PX .

Definition 3.2 (Atomic intervention) Consider an SCM C := (S, PN) and its en-
tailed distribution P C

X . We replace one (or several) of the structural assignments
to obtain a new SCM C̃. Assume that we replace the assignment for Xk by a real
value a we then call the entailed distribution of the new SCM an atomic intervention
distribution and say that the variables whose structural assignment we have replaced
have been intervened on. We denote the new distribution by P C̃

X = P
C;do(Xk):=a
X .

We refer the reader to Peters et al. [7] (Definition 6.8) for a more complete defi-
nition of intervention distribution generalized to any assignement such that Xk :=
f̃(P̃Ak, Ñk).

The markov property is central in causality in most of the methodologies relies
on it. However, as it is show in Peters et al. [7] (Proposition 6.31), assuming that
the observed distribution comes from an underlying SCM is sufficient to proove that
Markov property is fullfilled.

Definition 3.3 4(Markov property) Given a DAG G and a joint distribution PX ,
this distribution is said to satisfy

4From [7]
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1. the global Markov property with respect to the DAG G if

A⊥⊥G B|C ⇒ A⊥⊥ B

for all disjoint vertex sets A,B,C.

2. the local Markov property with respect to the DAG Gif each variable is inde-
pendent of its non-descendants given its parents, and

3. the Markov factorization property with respect to the DAG G if

p(x) = p(x1, ..., xd) =
d∏

j=1

(xj|paGj ).

For this last property, we have to assume that PX has a density p; the factors in
the product are referred to as causal Markov kernels describing the conditional
distributions PXj |PAG .

Theorem 1 5(Equivalence of Markov properties) If PX has a density p, then all
Markov properties in Definition [3.3] are equivalent.

We refer the reader to Theorem 3.27 from Lauritzen [8] for a detailed proof.

3.2.2 Confounding

As will be detailed in section [4], the notion of confounder is central to our problem.
Comming back to our example of the North Atlantic Oscillation driving precipita-
tion in Europe, one could look at the distribution (see [3.2]) of the precipitation
in Denmark when intervening on the precipitation in the Medieteranean. It seems
obvious that the intervened distribution would be the same as the observed distri-
bution. However, one would observed that modifying the values of the precipitation
in the Mediteranean would affect the conditional ditribution of the precipitation in
Denmark. This is known to be a confounding effect. And in this case the confounder
is known to be the North Atlantic Oscillation.

Definition 3.4 (Confounding) Consider an SCM C over nodes V with a directed
path from X to Y , X, Y ∈ V . The causal effect from X to Y is called confounded
if pC;do(X:=x)(y) ̸= pC(y|x). Otherwise, the causal effect is called “unconfounded.”

When aiming to estimate the causal effect of one variable on another in the
presence of potential confounders, it is important to adjust one’s estimate to these so
as not to obtain a biased estimate. The notion of Valid Adjustement Set consider the
idea that a set of variables is sufficient when adjusting to get an unbiased estimate.

Definition 3.5 (Valid Adjustement Set) Consider an SCM C over nodes V and let
Y ̸∈ PAX (otherwise we have pC;do(X:=x)(y) = pC(y)). We call a set Z ⊂ V {X, Y } a
valid adjustment set for the ordered pair (X, Y ) if

pC;do(X:=x) =

∫
z

pC(y|x, z)pC(z)dz

If Z is in Z, we have pC;do(X:=x) =
∑

z p
C(y|x, z)pC(z)

5From Peters et al. [7]
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Theorem 2 (Valid adjustment sets) Consider an SCM over variables X with X, Y ∈
X and Y ̸∈ PAX . Then, the following three statements are true.

1. “parent adjustment”:

Z := PAX

is a valid adjustement set for (X, Y ).

2. “backdoor criterion”: Any Z ⊂X {X, Y } with

• Z contains no descendant of X and

• Z blocks all paths from X to Y entering X through the backdoor (X ← ...)

is a valid adjustment set for (X, Y ).

3. “toward necessity”: Any Z ⊂X {X, Y } with

• Z contains no descendant of any node on a directed path from X to Y
(except for descendants of X that are not on a directed path from X to
Y ) and

• Z blocks all non-directed paths from X to Y

is a valid adjustment set for (X, Y ).

We refer the reader to Peters et al. [7] (Proposition 6.41) for detailed explanations
about backdoor path and proofs.

need description of faithfulness assumption
As previously stated, there is different frameworks to tackle causal questions

3.2.3 Granger causality

Until now we have not had recourse to the notion of time to arrive at causal con-
clusions and this is one of the strengths of the theoretical framework developed by
Pearl, Spirtes and Glymour at the end of the last century. Nevertheless, it seems ob-
vious that temporal information plays a role in the notion of causality and it would
be a pity to deprive ourselves of it. A straightforward methodology, considering time
series, relying on the fact that causes should precede effects (also known as the time
order assumption) as been developped by Clive Granger in its early work Granger
[9]. Granger’s idea was that a variable X should be considered as a cause of an other
variable Y if X contains unique information about the future of Y . This framework
is known as Granger Causality (GC) and most of the time we reformulate this idea
of unique information contained X on the future of Y by the predictive power of the
past of X on the future of Y . Let’s consider the very simple bivariate linear case.

We consider two time series (Xt)t∈Z and (Yt)t∈Z and the two following autoregres-
sive models for (Yt)t∈Z, named restricted and full to highlight the fact that the first
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is modeling (Yt)t∈Z only considering it’s own past and that the second also consider
the past of (Xt)t∈Z. This gives us

Y res
t =

τ∑
i=1

aresi Yt−i + ϵres (2)

Y full
t =

τ∑
i=1

afulli Yt−i +
τ∑

i=1

bfulli Xt−i + ϵfull (3)

Where ares, afull and bfull are the regression coefficient of the models, ϵres and ϵfull
are random noise considered as independent of Xt and Yt and τ is the considered time
lag. We can now use a statistical test to compare both residuals of the restricted and
full models to assess wether or not (Xt)t∈Z is Granger causing (Yt)t∈Z. We typically
use a F-test

F =
RSSres −RSSfull/(r − s)

RSSfull/(T − r)
(4)

where RSSres and RSSfull are the residual sum of squares for the restricted and
full models. Using this test, we reject the null hypothesis stating that (Yt)t∈Z is
not Granger caused by (Xt)t∈Z if the observed test statistic F exceeds the (1−α)%
quantile of an F-distribution with r − s and T − r degrees of freedom.

It is important to raise that, restricted to the bivariate case, granger causality can
be severly misleading due for example to potential confounders. Let’s for example
consider the case where a third time serie (Zt)t∈Z is granger causing (Yt)t∈Z with a
lag of two and granger causing (Xt)t∈Z with a lag of one

Zt = a1Zt−1 + ϵZ

Xt = a2Zt−1 + ϵX

Yt = a3Zt−2 + ϵY

Then using bivariate models considering only (Xt)t∈Z and (Yt)t∈Z for testing the
null hypothesis H0 : (Xt)t∈Z ̸→ (Yt)t∈Z will lead to uncorrect result by rejecting the
null hypothesis and thus inferring that (Xt)t∈Z causes (Yt)t∈Z when it is not. In
fact, in that case, considering only (Xt)t∈Z, (Yt)t∈Z, the past of the serie (Xt)t∈Z is
containing unique information about the future of (Yt)t∈Z. Thus it is important to
conditioned our regression on potential (and potentially multivariate) confounders
(Zt)t∈Z. We then consider the following restricted and full models

Y res
t =

τ∑
i=1

aresi Yt−i +
τ∑

i=1

Bres
i Zt−i + ϵres (5)

Y full
t =

τ∑
i=1

afulli Yt−i +
τ∑

i=1

Bfull
i Zt−i +

τ∑
i=1

cfulli Xt−i + ϵfull (6)
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Where Bres and Bfull are matrixes of the regression parameters of (Zt)t∈Z on
(Yt)t∈Z.

The Granger Causality framework can be widely extended for example by con-
sidering non-linear relationships between the variables with for example kernel re-
gression or neural networks regressors, we refer the reader to Shojaie and Fox [10]
for futher developpement of nonlinear GC.

It seems also important to raise the fact that GC does not directly mesure causal-
ity relations but assess wether or not a serie X is predictive of another serie Y .

That being said, an important theorem directly relate Granger Causality to
causality.

Theorem 3 (Granger causality justification) Consider an SCM without instanta-
neous effects for the time series (Xt)t∈Z such that the induced joint distribution is
faithful with respect to the corresponding full time graph. Then the summary graph
has an arrow from Xj to Xk if and only if there exists a t ∈ Z such that

Xk
t ⊥̸⊥ Xj

past(t)|X
−j
past(t) (7)

We refer the reader to the book Peters et al. [7] Appendix C.14 for the proof of this
theorem.

This imply that if there is no instantaneous effect in the series (Xt)t∈Z and
that the SCM if faithfull then Xj is a direct cause of Xk if and only if Xk

t is not
independent of the past Xj

t knowing the past of all other variables contained in
(Xt)t∈Z.

It has also be shown that GC is closely related to Conditional Mutual Information
(CMI) and thus not only considering predictability power of the considered variables
but using Information Theory to asses wether or not the past of (Xt)t∈Z is containing
unique information about the future of (Yt)t∈Z. We refer the reader to Amblard and
Michel [11] for futher developpement of this idea.

3.3 Causality in geosciences

With the important theoretical developments of the last few years, causal methods
have become an essential part of some scientific disciplines, especially in health sci-
ences and in econometrics. These methods are particularly suitable for assessing
the effect of drug treatments on recovery or the effect of a public policy on the
economic health of a country. However, they have taken longer to emerge in the cli-
mate sciences and geosciences in general, for both methodological and philosophical
reasons.

Indeed, the climate, due to its chaotic and non-stationary nature, is outside
the theoretical framework of the first methods developed. However, during the last
decade, large number of researchers have been interested in applying causal methods
to climate science, leading to the emergence of new methods particularly suited to
this framework.

The PC algorithm and its extensions (PCMCI, LPCMCI, etc...) is particularly
well suited to build graphs from time series. In Runge et al. [12], authors decompose
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Figure 3: Schematic representation of our proposed approach illustrated for the complex system
Earth.
(a) Climatological variables such as sea-level pressure or surface temperature are typically provided as time series at locations on a
regular grid. (b) In the first step of our approach, a Varimax-dimension reduction yields a small set of regional components (here
denoted by X, Y, y) representing climatological subprocesses with corresponding time series. (c) In the second step of our approach,
this smaller set of variables allows for a reconstruction of the causal network (black links, labels denote time lags). An important
pitfall in non-causal networks (as constructed from pairwise association measures such as cross-correlation) is that links can be
spurious due to a common driving by another process or due to transitivity effects leading to indirect paths (grey dashed arrows in
c). Perturbations cannot propagate along common-driver links (for example, between X and Z1) affecting network measures like the
degree. Further, indirect paths such as from X to Y affect shortest path lengths in non-causal networks. (d) In the third step of
our approach, the aim is to directly quantify the causal effect between pairs of components based on the causal network (Tigramite
approach) and detect through which components and how much the causal effect is mediated. In the linear framework studied here
this can be achieved by causal effect measures based on suitable link weights, where the weight of a link, for example X-W1, indicates
the causal effect of a 1 s.d. perturbation in X on W1 (see Fig. 3b for a formula relating link weights to causal effects). Binary causal
networks do not properly account for different link strengths which affects classical network measures (grey highlights in d). This
analysis can be used to test specific hypotheses, but also to construct aggregate node measures (e) to identify components with high
cumulative causal effect either as sources (causal gateways) or as intermediate nodes on causal pathways (causal mediators).

the climate systems in differents modes of variability using a Varimax rotation on
the extracted principal components (see 4.3.2) and reconstruct a causal graph using
the PC algorithm leading to teleconnection6 pattern discoveries. Applied to a data
set of atmospheric dynamic, the method yelds to insights into the Pacific–Indian
Ocean interaction relevant for monsoonal dynamics.

In their paper, aithors of Runge et al. [13] highlights the potential applications of
discovery and causal inference methods in the geosciences but also the specific chal-
lenges in this field. One of them being the discovery of features causaly relevant. In
fact the causal discovery methodologies can not be apply to low scale observation for
computational reason and for interpretability issues. But at the same time, climate
variabilities extracted by tradictional statistical tools (as PCA) are not necessarily
the most suitable for causal discovery as their are agnostic of the causal problematic.
It is with this in mind that we develop in the following an approach that seeks to
discover relevant climate variabilities for causal effect estimation.

6Teleconnections are statistical association between different climates variabilities. Authors of
Runge et al. [12] claim for a need to go over statistical association within a causal framework
leading allowing potential intervention in the model
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4 Problematic

4.1 Problem description

So far, we have assumed that all the variables of interest are observed (except for
noise). In practice, this is rarely the case and it is therefore necessary to have
methods leading to unbiased estimates of the parameters of interest in our causal
model. As described in subsection 3.2, a bias may appear in our estimation of the
causal effect of the variable X on the variable Y if we are not controlling for the
potential confounders. This idea is clearly entailed in the famous Simpson’s paradox
(see Simpson [14]). This "refers to the phenomenon whereby an event C increases
the probability of E in a given population p and, at the same time, decreases the
probability of E in every subpopulation of p" (Pearl [5]).

An interesting example of this "paradox" is the well known kidney stone exam-
ple from medical study. We are interested in determining which treatment between
treatment A (medication) and treatment B (surgical intervention) is the most effec-
tive to treat kidney stones. Let’s first have a look at some observational data

Treatment A Treatment B
Recovery rate 78% (273/350) 83% (289/350)

From those data it may appear that treatment B is preferable. But as treatment
A is clearly less invasive as treament B, medication is in general prefered to treat
patient with small kidney stone when treatment A is prefered for those having large
kidney stones. Splitting the patient in those two groups, Small kidney stiones and
Large kidney stones patients we get the following recovery rates

Treatment A Treatment B
Small kidney stones 93% (81/87) 87% (234/270)
Large kidney stones 73% (192/263) 69% (55/80)

Both 93% (81/87) 87% (234/270)

When looking at the recovery rates of treatment A and B for small and large
stones individually, we get the opposite conclusion, in both cases treatment B should
be prefered to maximize the recovery rate. This "paradox" comes from the fact that
kidney stones sizes have also have a big influence on the recovery rate and not only
the decision of Treatment. It should be thus considered as a confounding factor and
we should control for this variable estimate the treatment effect of medication or
surgical intervention on the recovery of kidney stones. The same effect have, for
example, been observed in the fatality rate of covid in different countries (see [15])
where it has for example been observed that Italy had a higher survival rate but when
controlling on on demographic informations such as age the opposite conclusion can
be made (comming from the fact that chinese population is older and that age a a
strong positive correlation with fatality rate).

This phenomenon is not restricted to categorical variables and can therefore be
found in the statistical analysis of climate. An interesting example comming from the
climate science community is the confounding bias of the North Atlantic Oscillation
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Figure 4: Considered causal network showing the causal association between the
North Atlantic Oscillation (NAO), precipitation in Denmark (DK) and in the
Mediterranean region (MED). From Kretschmer et al. [6]

(NAO) on precipitation in Europe. The NAO is a well studied climate phenomenon
over the North Atlantic Ocean of fluctuations in the difference of atmospheric pres-
sure at sea level between the Icelandinc Low 7 and the Azores High8. It is one of
the most important climate flucatuations in North Atlantic and is thus strongly re-
lated with climate in western Europe and Eastern America. Authors of Kretschmer
et al. [6] proposed for example to use a causal framework to study the confounding
bias that NAO imply in the estimation of the association between precipitation in
mediterranean region and Denmark during summer. Summer precipitation in these
two regions is negatively correlated (r=-0.24)9, but as the authors point out, climate
scientists will generally agree that this correlation does not actually imply a direct
causal link and should therefore not be considered a teleconnection. In fact, it has
been widely studied that the positive phases of the summer NAO (SNAO) are char-
acterized by drought anomalies in northern Europe but concurrently by particularly
wet conditions in the Mediterranean region. Thus, SNAO should be considered as
a common driver (or confounder) between these two features and should be taken
into account when modelling their interaction.

Considering this expert knowlegde (summarized in figure [4]) about the associa-
tion between those three features, knowing the Summer North Atlantic Oscillation
(SNAO) and precipitation in Denmark (DK) and in the Mediterranean region
(MED), and assuming linear dependence and gaussian noises we can test the hy-
popthesis of no direct causal link between DK and MED. As it as be shown in
Baba et al. [16], considering multivariate normal distribution, testing for conditional
independence is equivalent as testing for null partial correlation. We can thus esti-

7Icelandic Low is a semi-permanent centre of low atmospheric pressure found between Iceland
and southern Greenland

8Azores High is a large subtropical semi-permanent centre of high atmospheric pressure typically
found south of the Azores in the Atlantic Ocean

9Authors considered summer-mean data (June–August) of precipitation in Denmark (DK;
50°–60°N, 2°–15°E) and the Mediterranean (MED; 36–41°N, 10°–30°E) provided by the NCEP
reanalyses (https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html), and an index
of the NAO provided by NOAA (https://psl.noaa.gov/data/climateindices/list).
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mate the partial correlation between DK and MED by estimating the correlation
between the residuals of the linear regression of MED knowing NAO and DK
knowing SNAO, where the regression coefficient β̂DK and β̂MED can be estimated
with the Least Squares method, giving

ϵ̂MED = ∥MED −NAOβ̂MED∥22
ϵ̂DK = ∥DK −NAOβ̂DK∥22

ρMEDDK.NAO = corr(ϵ̂MED, ϵ̂DK)

where ϵ̂DK and ϵ̂MED the respective residuals of both regressions.
This leads to an estimated partial correlation ρMEDDK.NAO of 0.01. It appears

that our hypothesized causal network seems to be correct and that DK and MED
have no direct causal association, which seems consistent with our climatic under-
standing of these two phenomena.

It is easy in this context to assess the hypothesis that there is no causal link
between those two features since we have a relatively clear understanding of the
main climate mechanisms that generate them. Unfortunately, in many contexts we
do not have this knowledge or it involves complex models that are much more difficult
to interpret. For example, let us imagine that we do not have the expert knowledge
that NAO is the main common driver of MED and DK. This makes it much
more complicated to evaluate our hypothesis and raises many questions about the
method to be used and the data that one should potentially include in the modelling.
The climate system involves complex interrelationships between a large number of
phenomena at a variety of spatial and temporal scales and controlling all of these
features poses different difficulties both from a statistical (high dimensionality) and
computational (algorhythmic complexity) perspective.

One could imagine that field knowledge may gives us insights about the features
that we should includes in our modelling in order to reduce the bias of our causal
estimate. Returning to our initial problem of estimating the causal association
between DK and MED, we can first consider that climate knowledge allows us to
know that sea level pressure is likely to induce a bias in our estimation without
additional spatial information. We therefore need to condition our estimate on all
sea level pressure observations with the highest possible spatial resolution. Since we
are considering three-monthly time averages only over the summer period we are in a
typical high-dimensional case (the spatial resolution of our data is much higher than
the temporal resolution). A common approach to tackle this problem would then be
to use a regression method well-suited for high-dimensional problem such as Lasso or
Ridge regression to estimate the residuals of DK and MED regressed on sea surface
pressure observations (HGT 10). We believe that this method, although effective,
suffers from a lack of interpetability and hardly allows a better understanding of the
teleconnections between the different studied phenomena. Indeed, one could argue
that it could be of great interest to discover what are the main climate oscillations
that confound our two signals when estimating their association. To make it more

10The North Atlantic Oscillation considered in this study is computed using a Varimax PCA to
monthly mean standardized 500-mb height (known as hgt) anomalies obtained from the CDAS in
the analysis region 20°N-90°N between January 1950 and December 2000.
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Figure 5: Causal Network representing our learning problem.

clear, in the precedent example, it might be interesting to be able to discover a signal
strongly correlated with the NAO when estimating the partial correlation between
DK and MED given HGT .

This brings us to our main research question : What are the main confounding
signals of the two phenomena whose causal association we seek to estimate? In the
following sections we will formalize it and give an overview of the related methods
that we consider relevant and of interest to tackle this problem.

4.2 Problem formalization

Let us consider two time series (Xt)t∈Z ∈ RT and (Yt)t∈Z ∈ RT and spatio-temporal
proxy variables (Ut)t∈Z ∈ RT× that potentially confound the causal relation between
X and Y and are potentially high-dimensional (d ≫ T ). We aim to discover a
mapping function w such that the variable Zt = w(Ut) ∈ RT×p (with p ≪ d) are
a set of confounding variables which lead to an unbaised estimate of the causal
effect of X on Y when controlling for them. This formulation is entailed in the
causal graph in figure [5] where directed arrows represent causal association and
undirected arrows for statistical association that are not necessarly causal.

We decide not to choose a causal direction for the relation between latent vari-
ables (Zt)t∈Z and (Ut)t∈Z because it is a rather philosophical question wether the
low-scale processes give rise to large-scale phenomena (which could be considered as
a physical approach) or the other way around (more of a probabilistic approach) and
we would like to keep the latitude to consider both. Also, while the causal links be-
tween Z, X and Y can potentially involve time, the w mapping is only in the spatial
domain as we seek to approximate existing approaches in teleconnection discovery
where climate oscillations generally involve spatial mapping only (e.g. component
analysis in the spatial domain for the ENSO and NAO indexes).

Therefore, we formulate our learning problem as follow : Considering the causal
graph in figure [5] we are interested in estimating the Average Causal Effect of X
on Y , knowing EC;do(X):=x[Y ], by learning a valid adjustment set Z as a mapping w
of proxy variables U .
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4.3 Related work

4.3.1 Lasso

Proposed in 1996 by Robert Tibshirani in [17], the LASSO regression is a well studied
estension of the Linear Least Squares regression that deals with high-dimensional
predictors with sparse regression coeffcients. This a widely used methodology in
health sciences and econometrics for covariates selection when one is interested in
estamating the average treatment effect of, for example, medication on recovery rate
or a policy on an outcome of interest in the presence of potential confounders. As
stated in Koch et al. [18], in the presence of a large number of covariates relative to
the number of samples, linear least squares regression may lead to strong overfitting
when estimating the causal effect adjusted on all the potential covariates. Then, one
could use the a LASSO regressions on both the treatment and the outcome from
the covariates in order to select the potential confounders (the confounders would
then be the intersection of the covariates selected from both regressions).

Our main concern regarding this methodology is that it doesn’t seems appropri-
ate to only select a few covariates when seeking to discover climate oscillations, we
would rather like to aggregate them as it is done in a Principal Component Analysis
(we may impose some sort of sparsity in the aggregation like it is done with rotated
Varimax PCA). Also, it has be shown that for estimation purpose, Lasso regres-
sion is not the more appropriate approach and one should rather use an adaptative
approach as it hs been done in Shortreed and Ertefaie [19].

4.3.2 Principal Component Analysis

Proposed by Karl Pearson in 1901 as a statistical formulation of the Pricipal Axes
theorem, Principal Component Analysis (PCA) is a widely studied methods. It
can briefly be defined as an orthogonal linear transformation of the data where
the variance of the data is ordered from the greates on the projection axes. This
methods, known as Empirical Orthogonal Function (EOF), have been extensively
used in the climate community. This is a really powerfull tool to analyses climate
variability as it is able to condense the information of high dimensional data sets
and thus allows to extract the main climate variabilities.

A commonly used extension of PCA in climate sciences is the rotated PCA
(RPCA) where an additional rotation is applied on the principal axes first extracted
with PCA aiming to get a more interpretable of our data. The Varimax rotation
developped in 1958 by psychologist Henry Felix Kaizer is certainly the most widely
used rotation by climate scientist. It aims at finding a transformation for which
"each factor has a small number of large loadings and a large number of zero (or
small) loadings"11. This tends to generate more interpretable components as each
extracted component represents a small number of original variable and can thus be
considered as a sparser version of the PCA. Formally, it find the linear combination

11From Abdi [20]
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of the original variables that maximized the variance of the loadings

R = argmaxR

1

p

k∑
j=1

p∑
i=1

(ΛR)4ij −
1

p

k∑
j=1

(
p∑

i=1

(ΛR)2ij

)2
 (8)

where Λ are the original components and R the rotation matrix.
The main drawback of PCA and its extension is that it is outcome agnostic,

meaning that we are not necessarly extracting components (in our case climate
oscillations) that are predictive or even associated with the phenomena of interest.

4.3.3 Othogonal Partial Least Squares Regression

A rather interesting approach when aiming to discover a latent representation Z ∈
Rp×N highly predictive of a certain outcome Y ∈ Rm×N from high dimensional data
X ∈ Rn×N is the one of Orthogonal Partial Least Squares. It aims to discover a
projection matrix U that is highly predictive of Y by minimizing a Least Squares
loss

L(U,W ) = ∥Y −WUTX∥2F (9)

where ∥.∥F denotes the frobenius norm. Authors of Arenas-García and Gómez-
Verdejo [21] show that it can be formulated as an eigen value decomposition problem.

Derivating the loss with regard to U we get

∂L(U,W )

∂U
= −2CXYW + 2CXXUW TW = 0 (10)

⇔U = C−1
XXCXY (W

TW )−1 (11)

where CAB is the covariance matrix of A and B up to a scalar mutliplication. In-
jecting [10] in our loss function and after some algebraic manipulation we get

L(W ) = Tr(CY Y )− Tr((W TW )−1W TCT
XYC

−1
XXCXYW ) (12)

And as Tr(CY Y ) is constant regarding W we have that our learning problem can be
reformulated as follow

max
U

Tr(XTCT
XYC

−1
XXCXYW

s.t. W TW = I
(13)

whose solution is obtained with a standard eigen value decompostion

CT
XYC

−
XX1CXYw = λw (14)

This method is a powwerfull tool to extract components that are relevant for
predictive purpose. Also, as its formulation is rather simple, it can easily be extended
to kernelized or sparse version as it is proposed in Arenas-García and Gómez-Verdejo
[21].

Our main concern considering this approach is that (considering tha causal learn-
ing problem described in section 4) a non confounding variable that is strongly re-
lated to X (but not to Y ) will be necessarly associated to Y through X (because
Z → X → Y ) thus PLS might extract this variable as a confounder when it is not.
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4.3.4 Granger PCA

In subsection [4.3.2] we stated that one of the drawback of PCA was that it is
outcome agnostic and in subsection [4.3.3] we described PLS and extensions that
can be considered as outcome aware PCAs. An other approach recently presented
in Varando et al. [22] is the Granger rotation which aims to find a rotation that
extracts components which are ordered from the most to the least granger caused by
an external phenomena. Considering a high dimensional time series (Xt)t∈Z ∈ RT×d

caused by a one dimensional serie (Yt)t∈Z ∈ RT , we search for a rotation for which the
first components maximize the differences between the squared error of the (Xt)t∈Z
modeled by its past and the squared error of (Xt)t∈Z modeled by its past and the
past of (Yt)t∈Z. Formally, considering linear autoregressive models we have want to
find the linear combination U such as

U = argmaxU {RSS0 −RSS1}
RSS0 = ∥X − (XU)pastW0∥22
RSS1 = ∥X − [(XU) Y ]pastW1∥22

Where (XU)past are the past values12 in the projected space, W0 their repective
regression coefficient in the linear autoregressive model, [(XU) Y ]past the past values
of the concatenation of the projection of X and Y andX1 their respective regression
coefficients.

Authors show that this problem can be solved as the following Eigen Value
Decomosition (EVD) problem

max
U

UTXT (WW T − V V T )XU

s.t. UTU = I
(15)

with

W = I −Xpast(X
T
pastXpast)

−1XT
past

V = I − [XY ]past([XY ]Tpast[XY ]past)
−1[XY ]Tpast

where [XY ]past is a simple column concatenation of Xpast and Ypast.

12Here, when we consider the past of variable Apast we consider a simple column concatenation
of the past values of A up to a specific time lag. For example consider a time lag of τ we have
Apast = [At−1|...|At−τ ].
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5 Methodology
We describe in this section our approach to tackle the problem describe in section 4,
knowing get an unbiased estimate of the causal effect of the serie (Xt)t∈Z ∈ RT on
(Yt)t∈Z ∈ RT potentially biased by unobserved confounders (Zt)t∈Z ∈ RT×p that we
would like to recover using high dimensional proxy variables (Ut)t∈Z ∈ RT×d (with
d≫ p).

As a first approach, we decided to model our problem by a linear SCM C (of
entailed distribution PC) with gaussian random noises, knowing

Zt ∼ Np(0,Σz) (16)

Ut = ZW̃ +NU (17)
Xt = ZtβX +NX (18)
Yt = ZtβY + αX +NY (19)

with NU , NX and NY being random gaussian noises of respective variances ΣU ∈ Rd,
σX ∈ R, σY ∈ R. Here we consider the "probabilistic" approach and thus consider
that high scale processes Z are observed threw a high-dimensional and therefore low
scale proxy variables U .

Therefore, the parameters to be learn in the considered model are W̃ , βX , βY

and α. As we consider a linear SCM with gaussian noise, the expectation of Y
conditioned on X and Z is given by

E[Y |X = x, Z = z] = ax+ bT z

and since Z is a valid adjustement set (see 3.5) we have that

∂

∂x
EC;do(X):=x[Y ] =

∂

∂x
E[Y |X = x, Z = z]

= a

Thus, model parameters can be estimated using simple regressions. The main
problem here being that latent variables Z are not observed and thus we aim to
estimate them or at least estimate a valid adjustment set for the estimation of
parameter α.

5.1 Proposed methodology

5.1.1 Lasso selection

As a first approach, we seek to discover among a set of pre-extracted variabilities
the one that are the the most confounding. For this purpose we first extract the
first r principal components (Pi)i∈{1,...,r} of the proxy variables U .

As raised in Shortreed and Ertefaie [19], inclusion of the proxy variables that
only impact the cause X can inflate the standard errors without improving the bias
but proxy that are only associated with the outcome and unrelated to the cause can
improve precision.
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Thus we select the s potential confounders (Ci)i∈{1,...,r} as the principal compo-
nents which have non null regression coefficient when regressing the outcome Y from
X and (Pi)i∈{1,...,r}

βlasso = argminβ,α∥Y − Pβ − αX∥22 + λ∥β∥22
Ci = PiIβlasso

i ̸=0 ∀i ∈ {1, ..., r}

When then order those components by confounding efect by performing an Or-
dinary Least Square regression from the selected components to both the cause X
from (Ci)i∈{1,...,s} and the outcome Y from (Ci)i∈{1,...,s} and X.

βX = argminβX
∥X −RβX∥22

{βY , α} = argminβY ,α∥Y −RβY − αX∥22

The principal confounding component will then be considered as the one with highest
confounding score, knowing cs = β2

X .β
2
X .

Althought simple, this method tackle a few of the underlined difficulties of con-
founding adjustment. First, by first extracting the principal components we reduce
the dimensionality of our considered data and we obtain an interpretable result
(when just performing a Lasso regression on the all data would lead to a very sparse
and thus uninterpretable solution). Second, as we first select the potential bias using
a Lasso regression for Y we reduce the potential bias induced by the components
that are only associated with the cause X or are independent from both the cause
and the outcome.

5.1.2 Confounded Partial Least Squares

Considering the SCM described by [16] and given a valid adjustment set Z̃, we
can estimate the parameters α, βX and βY as the parameters of a Least Squares
regression.

L = ∥Y − αX − ZβY ∥22 + ∥X − ZβX∥22 (20)
(21)

Estimating βX it is rather straightforward as it is the regression coefficient of a
multivariate linear regression.

βX = (ZTZ)−1ZTX (22)

Derivating our loss with regard to α we have that

∂L
∂α

= −2XT (Y − αX − ZβY ) = 0 (23)

⇔ α = X‡(Y − ZβY ) (24)
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and with regard to βY we get

∂L
∂βY

= −2ZT (Y − αX − ZβY ) = 0 (25)

⇔ βY = Z‡(Y − αX) (26)

Where X‡ = (XTX)−1X.T and Z‡ = (ZTZ)−1Z.T stands for the pseudo-inverse of
X and Z. By injecting equation [24] in equation [26] we obtain

βY = Z‡(Y −X‡Y X)(1−XZ‡X‡Z)−1 (27)

and α is obtained by injecting equation [27] in equation [24]

α = X‡(Y − ZZ‡(Y −X‡Y X)(1−XZ‡X‡Z)−1) (28)

Similarly, assuming that weight matrix W̃ in equation 16 is invertible and de-
noting W its inverse we estimate W by considering fixed values of βX , βY and α.
Considering our loss function with Z = UW and denoting Ỹ = Y − αX we have

L = ∥Ỹ − UWβY ∥22 + ∥X − UWβX∥22 (29)
(30)

derivationg with regard to W gives us

∂L
∂W

= −2UT Ỹ βY + 2UTUWβY β
T
Y − 2UTXβX + 2UTUWβXβ

T
X = 0

⇔UTUW (βY β
T
Y + βXβ

T
X) = UT (Ỹ βY +XβX)

And we finally get that

⇔ W = (UTU)−1UT (Ỹ βY +XβX)(βY β
T
Y + βXβ

T
X)

−1 (31)

As this problem have clearly many solutions, we propose to solve it in an itera-
tive way, first optimizing W for fixed regression parameters β̂

(k)
X , β̂(k)

Y and α̂(k) and,
find the optimal regression parameters β̂

(k+1)
X , β̂(k+1)

Y and α̂(k+1) given the induced
latent variables Ẑ(k) = UŴ (k). During the optimization of W , we impose indepen-
dence of the learn latent representation for interpretability purpose and problem
simplification. This procedure is describe in the following algorythm.

As the implementation of the learning algorithm as not be done yet, we use in
the result section the results given by an automated optimisation algorithm.

6 Experimental results

6.1 Ground experimentation

We now consider the causal problem presented in Kretschmer et al. [6] (example 3),
knowing the confounding bias induced by the El-Nino-Souther Oscillation (ENSO)

21



Algorithm 1 Parameter estimation in the Confounded Partial Least Square prob-
lem
Require: Inital values of β(1)

X , β(1)
Y and α(1), observation U , X and Y , regularization

parameter λ and
k= 1
while |α(k) − α(k−1)| < ϵ or k = 1 do

W (k)) = (UTU)−1UT (Ỹ β
(k)
Y +Xβ

(k)
X )(β

(k)
Y β

(k)
Y

T + β
(k)
X β

(k)
X

T + λI)−1

Z(k)) = UW (k))

β
(k+1)
X = Z(k))TX

β
(k+1)
Y = Z(k))T (Y − (1−X‡ZZTX)−1X‡(Y − ZZTY )

α(k+1) = X‡(Y − Z(k))β
(k+1)
Y

k = k+1
end while

Figure 6: Causal network showing the hypothesized direct effect of ENSO on the po-
sition of the Southern Hemisphere jet stream (Jet), and its indirect causal influence
mediated via the late-spring breakdown of the stratospheric polar vortex (SPV).
From Kretschmer et al. [6]

on the South Pacific jet stream (JET) and the timing of the stratospheric polar
vortex breakdown (SPV). The positive phase of ENSO (known as El Niño) generally
induce high air surface pressure in the tropical western Pacific and it’s negative phase
(known as la Niña) with low air surface pressure in the same region. The two periods
last several months each and typically occur every few years with varying intensity
per period. But here the timing of the breakdown of the Southern Hemispheric
Polar vortex also impacts the Jet Stream position. The causal graph describing the
considered problem is given in figure [6].

Authors of Kretschmer et al. [6] uses indexes mesuring ENSO, SPV and JET
and estimate the following regression coefficient

JET = −0.04ENSO + 0.39SPV + ϵ (32)

We now consider that the ENSO phenomenon in unknown but however, we would
like to estimate the causal effect of SPV on JET. We propose to apply the two
approaches described in section [5.1] considering low scale observations of the Sea
Surface temperature. In fact the ENSO index considered by authors of Kretschmer
et al. [6] is the second component of a Principal Component Analysis of SST in
the region 5S − 5N and 170 − 120W . In our case we consider SST on the entire
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Figure 7: Activation map of the estmated weights W 3. (Top left) Component 1.
(Top right) Component 2. (Bottom lleft) Component 3. (Bottom right) Component
4. We apply a cubic transformation to enhance our results.

globe, aiming to discover potentially new climate oscillation confounding the causal
relation SPC → JET or confirming the importance to control on ENSO when
measuring this causal relation.

We first consider the Lasso selection approach. As it can be seen in figure [7], the
Principal Component that is inducing the main confounding bias seems more related
to SST activity in the North Atlantic which is confirmed by figure [8] where we can
see that this first component is significatively correlated with the North Atlantic
Oscillation (NAO). The second and third component do not seem to be correlated
with any of the considered known oscillation as its activation is not very loaclized
in a specific area. In contrast the Fourth component seems strongly associated with
ENSO as we can see high weight activation in the region where ENSO index is
computed.

The Confounding partial least square approach seems to give similar results. We
see in figure [9] that the first extracted component seems more related to the North
Atlantic Oscillation when the second and the third, rather similar (we can see that
they are highly correlated in figure [10]) are more associated with strong activation
on the West American coast, knwon to be mainly drived by ENSO variations. This
is confirmed by the correlation analysis in figure [10]. The fourth component does
not appear to be associated with any of the considered oscillations.

Our results seems to show the importance of adjusting the estimate of the causal
effect of SPV on the southern hemispheric jet stream. This insight can be confirmed
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Figure 8: Correlation between extracted components and known climate oscillation

Figure 9: Activation map of the estmated weights W 3. (Top left) Component 1.
(Top right) Component 2. (Bottom lleft) Component 3. (Bottom right) Component
4. We apply a cubic transformation to enhance our results.
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Figure 10: Correlation between extracted components and known climate oscillation

with simple regression which gives us array([-0.03376939, 0.21710294, 0.39332096])

JET = −0.03ENSO + 0.22NAO + 0.39SPV + ϵ

SPV = 0.26ENSO − 0.02NAO

Thus ENSO and NAO have both similar confounding effect as the product of their
respective regression coefficient in both regression are similar (cENSO = −0.03 ×
0.26 = −0.0078 and cNAO = 0.22 × −0.02 = −0.0044). However this hypothesis
should futher explored.

7 Discussion
The results presented in this report are only preliminary and are by no means
conclusive. We are currently working on theoretical and experimental results to
confirm the relevance of our approach. Inspite of this fact, if these results turn out
to be positive, we will consider extending our method to make it more appropriate
to geoscientific problems.

First we envisage to consider the implication of time in our model extending the
approach proposed in Varando et al. [22] with the Granger PCA.

It might also appear relevant to consider non linear dependencies between the
variables in our causal learning problem which brings a wide range of question and
problematics. A first approach could be to consider a kernelized version of our
learning algorithm.
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